Skip to main content

PTTG (Securin) as Cancer Biomarker

  • Reference work entry
Biomarkers in Cancer

Abstract

Pituitary tumor transforming gene (PTTG) has originally been discovered as a gene differentially expressed between rat pituitary tumor cells and normal rat pituitary tissue. It was rapidly recognized that PTTG mRNA and protein are much more abundant in various human tumor types as compared to the corresponding non-tumor tissue. The mammalian PTTG protein was found to be a securin, required for correct sister-chromatid separation and equal distribution of mitotic chromosomes to the daughter cells. Increased levels of the protein in tumor cells result in aneuploidy and DNA instability. The potential of PTTG to initiate and support tumor development was demonstrated in xenograft models. Transgenic mice finally proved a weak oncogenic potential of the gene. PTTG exhibits a vast impact on the transcriptome of tumor cells due to its ability to bind to general transcription factors, such as SP1, and to p53, which is of major importance for cell cycle regulation and apoptosis. Among the PTTG-regulated genes are some which are associated with tumor cell migration and invasion, corresponding to the metastasis-enhancing function of PTTG observed in xenograft models. In several human tumor types, high mRNA and protein levels of PTTG have been associated with increased proliferation index, with increased risk of metastases, and – most important – with lower overall survival. Due to the similarity of results among several clinical studies, including various types of solid tumors, it can be stated that PTTG is a valuable prognostic marker in aggressive human tumor diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACTH:

AdrenoCorticoTropic Hormone

ADH:

AntiDiuretic Hormone

AFP:

Alpha(α)-FetoProtein

bFGF:

basic Fibroblast Growth Factor

ca.:

“circa” (Latin) = approximately (English)

CAB:

Combined Androgen Blockade

ccRCC:

clear cell Renal Cell Carcinoma

cDNA:

complimentary DNA

DNA:

DeoxyriboNucleic Acid

e.g.:

“exempli gratia” (Latin) = for example (English)

ECM:

ExtraCellular Matrix

EGFP:

Enhanced Green Fluorescent Protein

EGFR:

Epidermal Growth Factor Receptor

EMT:

Epithelial to Mesenchymal Transition

ESCC:

Esophageal Squamous Cell Carcinoma

FAK:

Focal Adhesion Kinase

FSH:

Follicle-Stimulating Hormone

g:

Gram

GAPDH:

GlycerAldehyde-3-Phosphate DeHydrogenase

GBM:

GlioBlastoma (Multiforme)

GH:

Growth Hormone

HNSCC:

Head and Neck Squamous Cell Carcinoma

HPF:

High-Power Field

hPTTG:

human PTTG

HR:

High Risk

I:

Iodine

i.e.:

“id est” (Latin) = that is (English)

IDH1:

Isocitrate DeHydrogenase 1

IHC:

ImmunoHistoChemistry

LH:

Luteinizing Hormone

M:

Metastasis

MGMT:

MethylGuanine-DNA MethylTransferase

MI:

Mitotic Index

MMP:

Matrix MetalloProteinase

mRNA:

messenger RNA

MSH:

Melanocyte-Stimulating Hormone

N:

(Lymph)Node

NIS:

Sodium-Iodide Symporter

NSCLC:

Non-Small Cell Lung Carcinoma

p(T,N,M) :

pathological(T,N,M)

PCNA:

Proliferating Cell Nuclear Antigen

PCR:

Polymerase Chain Reaction

PRL:

Prolactin

pTNM:

pathological Tumor-Node-Metastasis

PTTG:

Pituitary Tumor Transforming Gene

p-value :

probability-value

Rb:

Retinoblastoma

RNA:

RiboNucleic Acid

RT-PCR:

Reverse Transcription-PCR

r-value :

correlation coefficient

SCLC:

Small Cell Lung Carcinoma

shRNA:

short hairpin RNA

siRNA:

short interfering RNA

SOP:

Standard Operating Protocols

STAT:

Signal Transducer and Activation of Transcription

STH:

SomatoTropic Hormone

T:

Tumor

TGF:

Tumor Growth Factor

TIMP:

Tissue Inhibitor of MetalloProtease

TSH:

Thyroid-Stimulating Hormone

V:

Vein

VEGF:

Vascular Endothelial Growth Factor

WHO:

World Health Organization

β-Gal:

β-Galactosidase

References

  • Bernal JA, Luna R, Espina A, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet. 2002;32:306–11.

    Article  CAS  PubMed  Google Scholar 

  • Boelaert K, Smith VE, Stratford AL, et al. PTTG and PBF repress the human sodium iodide symporter. Oncogene. 2007;26:4344–56.

    Article  CAS  PubMed  Google Scholar 

  • Cao XL, Gao JP, Xu Y, et al. Expression of pituitary tumor transforming gene 1 is an independent factor of poor prognosis in localized or locally advanced prostate cancer cases receiving hormone therapy. Asian Pac J Cancer Prev. 2012;13:3083–8.

    Article  PubMed  Google Scholar 

  • Chamaon K, Kanakis D, Mawrin C, et al. Transcripts of PTTG and growth factors bFGF and IGF-1 are correlated in pituitary adenomas. Exp Clin Endocrinol Diabetes. 2009;118:121–6.

    Article  PubMed  Google Scholar 

  • Chen L, Puri R, Lefkowitz EJ, et al. Identification of the human pituitary tumor transforming gene (hPTTG) family: molecular structure, expression, and chromosomal localization. Gene. 2000;248:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hu F, Zhou Y, et al. MGMT promoter methylation and glioblastoma prognosis: a systemic review and meta-analysis. Arch Med Res. 2013;44:281–90.

    Article  CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Papineni S, Lee SO, et al. Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cell by drugs that decrease specificity proteins. Mol Carcinog. 2011;50:655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho-Rok J, Yoo J, Jang YJ, et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology. 2006;43:1042–52.

    Article  PubMed  Google Scholar 

  • Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13:345. doi:10.1007/s11910-013-0345-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  PubMed  Google Scholar 

  • Di Fiore R, D’Anneo A, Tesoriere G, et al. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol. 2013;228:1676–87.

    Article  PubMed  Google Scholar 

  • Donangelo I, Gutman S, Horwath E, et al. Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology. 2006;147:4781–91.

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar SM, Malik MT, Kakar S. Small interfering RNA against PTTG: a novel therapy for ovarian cancer. Int J Oncol. 2007;31:137–43.

    CAS  PubMed  Google Scholar 

  • Filippella M, Galland F, Kujas M, et al. Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol (Oxf). 2006;65:536–43.

    Article  Google Scholar 

  • Fong MY, Farghaly H, Kakar SS. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/−) transgenic mice. BMC Cancer. 2012;12:532. doi:10.1186/1471-2407-12-532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Nomoto S, Koshikawa K, et al. Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. Hepatology. 2006;43:1267–75.

    Article  CAS  PubMed  Google Scholar 

  • Genkai N, Homma J, Sano M, et al. Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol Rep. 2006;15:1569–74.

    CAS  PubMed  Google Scholar 

  • Hamid T, Malik MT, Kakar SS. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells. Mol Cancer. 2005;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120:707–18.

    Article  PubMed  Google Scholar 

  • Hartmann C, Hentschel B, Simon M, et al. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 2013;19:5146–57.

    Article  CAS  PubMed  Google Scholar 

  • Heaney AP, Horwitz GA, Wang Z, et al. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med. 1999;5:1317–21.

    Article  CAS  PubMed  Google Scholar 

  • Heaney AP, Singson R, McCabe CJ, et al. Expression of pituitary-tumor transforming gene in colorectal tumors. Lancet. 2000;355:716–9.

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Shimada Y, Kan T, et al. Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma. Cancer Res. 2008;68:3214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Lu R, Jia G, et al. Expression of pituitary tumor transforming gene (PTTG) in human pituitary macroadenomas. Tumour Biol. 2013;34:1559–67.

    Article  CAS  PubMed  Google Scholar 

  • Kakar SS, Malik MT. Suppression of lung cancer with siRNA targeting PTTG. Int J Oncol. 2006;29:387–95.

    CAS  PubMed  Google Scholar 

  • Kim D, Pemberton H, Stratford AL, et al. Pituitary tumor transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene. 2005;24:4861–6.

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Franklyn JA, Smith VE, et al. Securin induces genetic instability in colorectal cancer by inhibiting double-stranded DNA repair activity. Carcinogenesis. 2007;28:749–59.

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Chen X, Liu W, et al. Role of the pituitary tumor transforming gene 1 in the progression of hepatocellular carcinoma. Cancer Biol Ther. 2011;11:337–45.

    Article  CAS  PubMed  Google Scholar 

  • Marques AC, Dupanloup I, Winckebosch N, et al. Emergence of young human genes after a burst of retroposition in primates. PLoS Biol. 2005;3:e357.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCabe CJ, Boelaert K, Tannahill LA, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 2002;87:4238–44.

    Article  CAS  PubMed  Google Scholar 

  • Pei L. Genomic organization and identification of an enhancer element containing binding sites for multiple proteins in rat pituitary tumor-transforming gene. J Biol Chem. 1998;273:5219–25.

    Article  CAS  PubMed  Google Scholar 

  • Pei L. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem. 2001;276:8484–91.

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol. 1997;11:433–41.

    Article  CAS  PubMed  Google Scholar 

  • Poznic M. Retinoblastoma protein: a central processing unit. J Biosci. 2009;34:305–12.

    Article  CAS  PubMed  Google Scholar 

  • Prezant TR, Kadioglu P, Melmed S. An intronless homolog of human proto-oncogene hPTTG is expressed in pituitary tumors: evidence for hPTTG family. J Clin Endocrinol Metab. 1999;84:1149–52.

    Article  CAS  PubMed  Google Scholar 

  • Raverot G, Wierinckx A, Dantony E, et al. Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow up. J Clin Endocrinol Metab. 2010;95:1708–16.

    Article  CAS  PubMed  Google Scholar 

  • Rehfeld N, Geddert H, Atamna A, et al. The influence of the pituitary tumor transforming gene-1 (PTTG-1) on survival of patients with small cell lung cancer and non-small cell lung cancer. J Carcinog. 2006;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saez C, Japon MA, Ramos-Morales F, et al. Hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene. 1999;18:5473–6.

    Article  CAS  PubMed  Google Scholar 

  • Shah PP, Kakar SS. Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of twist, snail, slug, and E-cadherin. Cancer Lett. 2011;311:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah PP, Fong MY, Kakar SS. PTTG induces EMT through integrin αVβ3-focal adhesion signaling in lung cancer cells. Oncogene. 2012;31:3124–35.

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Haruki N, Kuwabara Y, et al. Expression of PTTG (pituitary tumor transforming gene) in esophageal cancer. Jpn J Clin Oncol. 2002;32:233–7.

    Article  PubMed  Google Scholar 

  • Solbach C, Roller M, Fellbaum C, et al. PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast. 2004;13:80–1.

    Article  PubMed  Google Scholar 

  • Solbach C, Roller M, Peters S, et al. Pituitary tumor-transforming gene (PTTG): a novel target for anti-tumor therapy. Anticancer Res. 2005;25:121–5.

    CAS  PubMed  Google Scholar 

  • Solbach C, Roller M, Eckerdt F, et al. Pituitary tumor-transforming gene expression is a prognostic marker for tumor recurrence in squamous cell carcinoma of the head and neck. BMC Cancer. 2006;6:242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talvinen K, Tuikkala J, Nevalainen O, et al. Proliferation marker securin identifies favourable outcome in invasive ductal breast cancer. Br J Cancer. 2008;99:335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Tan Y, Zhou C, et al. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene. 2007;26:5596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Zhao W, Zhou C, et al. PTTG1 attenuates drug-induced cellular senescence. PLoS One. 2011;6:e23754. doi:10.1371/journal.pone.0023754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller M, Stupp R, Hegi ME. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice. Neuro Oncol. 2012;14 Suppl 4:iv100–8. doi:10.1093/neuonc/nos206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wondergem B, Zhang Z, Huang D, et al. Expression of the PTTG-1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res. 2012;72:4361–71.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Zhou C, Lou X, et al. PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res. 2009;69:3283–90.

    Article  CAS  PubMed  Google Scholar 

  • Yoon CH, Kim MJ, Lee H, et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem. 2012;287:19516–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R, Lu W, Chen J, et al. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology. 2003;144:4991–8.

    Article  CAS  PubMed  Google Scholar 

  • Zatelli MC, Tagliati F, Amodio V, et al. Role of pituitary tumor transforming gene 1 in medullary thyroid carcinoma. Anal Cell Pathol (Amst). 2010;33:207–16.

    Article  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Prezant TR, et al. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol. 1999a;13:156–66.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Horwitz GA, Heaney AP, et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab. 1999b;84:761–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yiang Y, Chen L, et al. Overexpression of pituitary tumor transforming gene (PTTG) is associated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Acta Histochem. 2013. doi:10.1016/j.acthis.2013.09.01.

    Google Scholar 

  • Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene. 2013. doi:10.1038/onc.2013.128.

    Google Scholar 

  • Zhou C, Tong Y, Wawrowsky K, et al. PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility. Oncogene. 2013. doi:10.1038/onc.2013.16.

    Google Scholar 

  • Zou H, McGarry TJ, Bernal T, et al. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999;285:418–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Kanakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kanakis, D.N., Kirches, E. (2015). PTTG (Securin) as Cancer Biomarker. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7681-4_19

Download citation

Publish with us

Policies and ethics