Skip to main content

Troponin Elevation Beyond Coronary Arteries

  • Reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Cardiac troponins are protein complexes that have become the gold standard biomarkers in the detection of myocardial injury. The use of new-generation high-sensitivity assays, which can detect even small increases in troponin levels, resulted in an increase in the number of patients with elevated troponin concentrations. However, in this case there are more false-positive results. This makes it of paramount importance to set differential diagnosis among several noncoronary entities such as stroke, pulmonary embolism (PE), sepsis, acute perimyocarditis, Takotsubo, acute heart failure (HF), and tachycardia. Technological progress of high-sensitivity troponin assays may be helpful in detecting even slight elevations of troponin in individuals, a condition that is met in several different clinical pathologies. However, despite the fact that troponin elevation is indicative of myocardial necrosis, it does not elucidate the pathophysiologic mechanism that causes myocardial damage. The purpose of this chapter is to report clinical pathologies where elevated troponin concentrations are found and to cite studies that have used troponin in the prediction and evaluation of future events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

American College of Cardiology

ACS:

Acute coronary syndromes

AMI:

Acute myocardial infraction

AV:

Atrioventricular

CAD:

Coronary artery disease

CKD:

Chronic kidney disease

cTn:

Cardiac troponin

ESC:

European Society of Cardiology

ESRD:

End-stage renal disease

HF:

Heart failure

IL:

Interleukin

MI:

Myocardial infraction

MRI:

Magnetic resonance imaging

PE:

Pulmonary embolism

PSVT:

Paroxysmal supraventricular tachycardia

SAH:

Subarachnoid hemorrhage

SIRS:

Systemic inflammatory response

SRCs:

Stress-related cardiomyopathies

TAVI:

Transcatheter aortic valve implantation

Tn:

Troponin

TNF-α:

Tumor necrosis factor-α

VARC:

Valve Academic Research Consortium

References

  • Adams 3rd JE, Abendschein DR, et al. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation. 1993;88(2):750–63.

    Article  CAS  PubMed  Google Scholar 

  • Altmann DR, Korte W, et al. Elevated cardiac troponin I in sepsis and septic shock: no evidence for thrombus associated myocardial necrosis. PLoS One. 2010;5(2):e9017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammann P, Fehr T, et al. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001;27(6):965–9.

    Article  CAS  PubMed  Google Scholar 

  • Ammann P, Maggiorini M, et al. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol. 2003;41(11):2004–9.

    Article  CAS  PubMed  Google Scholar 

  • Antman EM. Decision making with cardiac troponin tests. N Engl J Med. 2002;346(26):2079–82.

    Article  PubMed  Google Scholar 

  • Apple FS, Jesse RL, et al. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation. 2007;115(13):e352–5.

    Article  PubMed  Google Scholar 

  • Ay H, Koroshetz WJ, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology. 2006;66(9):1325–9.

    Article  CAS  PubMed  Google Scholar 

  • Becattini C, Vedovati MC, et al. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation. 2007;116(4):427–33.

    Article  CAS  PubMed  Google Scholar 

  • Ben Yedder N, Roux JF, et al. Troponin elevation in supraventricular tachycardia: primary dependence on heart rate. Can J Cardiol. 2011;27(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  • Bennett BL, Mahabee-Gittens M, et al. Elevated cardiac troponin I level in cases of thoracic nonaccidental trauma. Pediatr Emerg Care. 2011;27(10):941–4.

    Article  PubMed  Google Scholar 

  • Bertinchant JP, Polge A, et al. Evaluation of incidence, clinical significance, and prognostic value of circulating cardiac troponin I and T elevation in hemodynamically stable patients with suspected myocardial contusion after blunt chest trauma. J Trauma. 2000;48(5):924–31.

    Article  CAS  PubMed  Google Scholar 

  • Brandt RR, Filzmaier K, et al. Circulating cardiac troponin I in acute pericarditis. Am J Cardiol. 2001;87(11):1326–8.

    Article  CAS  PubMed  Google Scholar 

  • Brett J, Gerlach H, et al. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med. 1989;169(6):1977–91.

    Article  CAS  PubMed  Google Scholar 

  • Bybee KA, Prasad A. Stress-related cardiomyopathy syndromes. Circulation. 2008;118(4):397–409.

    Article  PubMed  Google Scholar 

  • Carlberg DJ, Tsuchitani S, et al. Serum troponin testing in patients with paroxysmal supraventricular tachycardia: outcome after ED care. Am J Emerg Med. 2011;29(5):545–8.

    Article  PubMed  Google Scholar 

  • Chagnon F, Bentourkia M, et al. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med. 2006;34(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Serfass RC, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise. J Appl Physiol (1985). 2000;88(5):1749–55.

    CAS  Google Scholar 

  • Chorianopoulos E, Krumsdorf U, et al. Preserved prognostic value of preinterventional troponin T levels despite successful TAVI in patients with severe aortic stenosis. Clin Res Cardiol. 2014;103(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  • Chow GV, Hirsch GA, et al. Prognostic significance of cardiac troponin I levels in hospitalized patients presenting with supraventricular tachycardia. Medicine (Baltimore). 2010;89(3):141–8.

    Article  CAS  Google Scholar 

  • Communal C, Sumandea M, et al. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002;99(9):6252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diris JH, Hackeng CM, et al. Impaired renal clearance explains elevated troponin T fragments in hemodialysis patients. Circulation. 2004;109(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Castle M, et al. Cardiac involvement in patients with acute neurologic disease: confirmation with cardiac troponin I. Arch Intern Med. 2000;160(20):3153–8.

    Article  CAS  PubMed  Google Scholar 

  • Douglas PS, O’Toole ML, et al. Cardiac fatigue after prolonged exercise. Circulation. 1987;76(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  • Ellis K, Dreisbach AW, et al. Plasma elimination of cardiac troponin I in end-stage renal disease. South Med J. 2001;94(10):993–6.

    Article  CAS  PubMed  Google Scholar 

  • Fabian TC, Mangiante EC, et al. Myocardial contusion in blunt trauma: clinical characteristics, means of diagnosis, and implications for patient management. J Trauma. 1988;28(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Schaus BJ, et al. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–7.

    Article  CAS  PubMed  Google Scholar 

  • Fishbein MC, Wang T, et al. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol. 2003;12(2):65–71.

    Article  CAS  PubMed  Google Scholar 

  • Giannitsis E, Steen H, et al. Cardiac magnetic resonance imaging study for quantification of infarct size comparing directly serial versus single time-point measurements of cardiac troponin T. J Am Coll Cardiol. 2008;51(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  • Giannitsis E, Roth HJ, et al. New highly sensitivity assay used to measure cardiac troponin T concentration changes during a continuous 216-km marathon. Clin Chem. 2009;55(3):590–2.

    Article  CAS  PubMed  Google Scholar 

  • Giannitsis E, Becker M, et al. High-sensitivity cardiac troponin T for early prediction of evolving non-ST-segment elevation myocardial infarction in patients with suspected acute coronary syndrome and negative troponin results on admission. Clin Chem. 2010;56(4):642–50.

    Article  CAS  PubMed  Google Scholar 

  • Hessel MH, Atsma DE, et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008;455(6):979–86.

    Article  CAS  PubMed  Google Scholar 

  • Horwich TB, Patel J, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108(7):833–8.

    Article  CAS  PubMed  Google Scholar 

  • Imazio M, Cecchi E, et al. Myopericarditis versus viral or idiopathic acute pericarditis. Heart. 2008;94(4):498–501.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs LH, van de Kerkhof J, et al. Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann Clin Biochem. 2009;46(Pt 4):283–90.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AS. Chasing troponin: how low can you go if you can see the rise? J Am Coll Cardiol. 2006;48(9):1763–4.

    Article  PubMed  Google Scholar 

  • Januzzi JL, van Kimmenade R, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  • Kerr G, Ray G, et al. Elevated troponin after stroke: a systematic review. Cerebrovasc Dis. 2009;28(3):220–6.

    Article  CAS  PubMed  Google Scholar 

  • Kucher N, Wallmann D, et al. Incremental prognostic value of troponin I and echocardiography in patients with acute pulmonary embolism. Eur Heart J. 2003;24(18):1651–6.

    Article  PubMed  Google Scholar 

  • Leon MB, Piazza N, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur Heart J. 2011;32(2):205–17.

    Article  PubMed  Google Scholar 

  • Levy RJ, Piel DA, et al. Evidence of myocardial hibernation in the septic heart. Crit Care Med. 2005;33(12):2752–6.

    Article  PubMed  Google Scholar 

  • Lim W, Qushmaq I, et al. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med. 2006;166(22):2446–54.

    Article  CAS  PubMed  Google Scholar 

  • Mehta NJ, Khan IA, et al. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol. 2004;95(1):13–7.

    Article  PubMed  Google Scholar 

  • Meyer T, Binder L, et al. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol. 2000;36(5):1632–6.

    Article  CAS  PubMed  Google Scholar 

  • Mingels A, Jacobs L, et al. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009;55(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  • Muller-Bardorff M, Weidtmann B, et al. Release kinetics of cardiac troponin T in survivors of confirmed severe pulmonary embolism. Clin Chem. 2002;48(4):673–5.

    CAS  PubMed  Google Scholar 

  • Natanson C, Eichenholz PW, et al. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med. 1989;169(3):823–32.

    Article  CAS  PubMed  Google Scholar 

  • Neilan TG, Januzzi JL, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114(22):2325–33.

    Article  PubMed  Google Scholar 

  • Newby LK, Jesse RL, et al. ACCF expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2012;60(23):2427–63.

    Article  PubMed  Google Scholar 

  • Olivetti G, Giordano G, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26(4):1068–79.

    Article  CAS  PubMed  Google Scholar 

  • Panteghini M, Pagani F, et al. Evaluation of imprecision for cardiac troponin assays at low-range concentrations. Clin Chem. 2004;50(2):327–32.

    Article  CAS  PubMed  Google Scholar 

  • Peacock 4th WF, De Marco T, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358(20):2117–26.

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim TM, Wyss TR. Takotsubo cardiomyopathy or transient left ventricular apical ballooning syndrome: a systematic review. Int J Cardiol. 2008;124(3):283–92.

    Article  PubMed  Google Scholar 

  • Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–53.

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Kjekshus H, et al. Cardiac natriuretic peptides and continuously monitored atrial pressures during chronic rapid pacing in pigs. Acta Physiol Scand. 2000;169(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  • Quenot JP, Le Teuff G, et al. Myocardial injury in critically ill patients: relation to increased cardiac troponin I and hospital mortality. Chest. 2005;128(4):2758–64.

    Article  CAS  PubMed  Google Scholar 

  • Ramaraj R, Sorrell VL, et al. Levels of troponin release can aid in the early exclusion of stress-induced (takotsubo) cardiomyopathy. Exp Clin Cardiol. 2009;14(1):6–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remes J, Helin M, et al. Clinical outcome and left ventricular function 23 years after acute coxsackie virus myopericarditis. Eur Heart J. 1990;11(2):182–8.

    CAS  PubMed  Google Scholar 

  • Sahlen A, Gustafsson TP, et al. Predisposing factors and consequences of elevated biomarker levels in long-distance runners aged >or=55 years. Am J Cardiol. 2009;104(10):1434–40.

    Article  CAS  PubMed  Google Scholar 

  • Sandhu R, Aronow WS, et al. Relation of cardiac troponin I levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. Am J Cardiol. 2008;102(5):632–4.

    Article  CAS  PubMed  Google Scholar 

  • Scharhag J, Herrmann M, et al. Independent elevations of N-terminal pro-brain natriuretic peptide and cardiac troponins in endurance athletes after prolonged strenuous exercise. Am Heart J. 2005;150(6):1128–34.

    Article  CAS  PubMed  Google Scholar 

  • Schreier T, Kedes L, et al. Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. J Biol Chem. 1990;265(34):21247–53.

    CAS  PubMed  Google Scholar 

  • Schultz JM, Trunkey DD. Blunt cardiac injury. Crit Care Clin. 2004;20(1):57–70.

    Article  PubMed  Google Scholar 

  • Sharkey SW, Lesser JR, et al. Spectrum and significance of electrocardiographic patterns, troponin levels, and thrombolysis in myocardial infarction frame count in patients with stress (tako-tsubo) cardiomyopathy and comparison to those in patients with ST-elevation anterior wall myocardial infarction. Am J Cardiol. 2008;101(12):1723–8.

    Article  PubMed  Google Scholar 

  • Sharkey SW, Windenburg DC, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55(4):333–41.

    Article  PubMed  Google Scholar 

  • Shave RE, Whyte GP, et al. Prolonged exercise should be considered alongside typical symptoms of acute myocardial infarction when evaluating increases in cardiac troponin T. Heart. 2005;91(9):1219–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shave R, George KP, et al. Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc. 2007;39(12):2099–106.

    Article  CAS  PubMed  Google Scholar 

  • Shave R, Ross P, et al. Cardiac troponin I is released following high-intensity short-duration exercise in healthy humans. Int J Cardiol. 2010;145(2):337–9.

    Article  PubMed  Google Scholar 

  • Sheyin O, Davies O, et al. The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Heart Lung. 2015;44(1):75–81.

    Article  PubMed  Google Scholar 

  • Thygesen K, Mair J, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31(18):2197–204.

    Article  CAS  PubMed  Google Scholar 

  • Thygesen K, Alpert JS, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581–98.

    Article  PubMed  Google Scholar 

  • Tung P, Kopelnik A, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35(2):548–51.

    Article  PubMed  Google Scholar 

  • Turner A, Tsamitros M, et al. Myocardial cell injury in septic shock. Crit Care Med. 1999;27(9):1775–80.

    Article  CAS  PubMed  Google Scholar 

  • Vavuranakis M, Voudris V, et al. Transcatheter aortic valve implantation, patient selection process and procedure: two centres’ experience of the intervention without general anaesthesia. Hellenic J Cardiol. 2010;51(6):492–500.

    PubMed  Google Scholar 

  • Vavuranakis M, Kariori M, et al. Troponin levels after TAVI are related to the development of distinct electrocardiographic changes. Int J Cardiol. 2013;167(2):606–8.

    Article  PubMed  Google Scholar 

  • Wang AY, Lai KN. Use of cardiac biomarkers in end-stage renal disease. J Am Soc Nephrol. 2008;19(9):1643–52.

    Article  CAS  PubMed  Google Scholar 

  • Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem. 2007;53(12):2086–96.

    Article  CAS  PubMed  Google Scholar 

  • Xu RY, Zhu XF, et al. High-sensitive cardiac troponin T. J Geriatr Cardiol. 2013;10(1):102–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz A, Mahrholdt H, et al. Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart. 2008;94(11):1456–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Vavuranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vavuranakis, M., Kariori, M., Papaioannou, T.G., Tousoulis, D. (2016). Troponin Elevation Beyond Coronary Arteries. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_41

Download citation

Publish with us

Policies and ethics