Skip to main content

Teaching and Learning Electricity: The Relations Between Macroscopic Level Observations and Microscopic Level Theories

  • Chapter
  • First Online:
International Handbook of Research in History, Philosophy and Science Teaching

Abstract

Problems in teaching and learning electricity can be addressed with the help of science history and philosophy. The literature on physics education and on history of science reveals two wide-reaching issues central to teaching electricity: sequencing concepts and identifying appropriate models to explain the macroscopic and microscopic aspects of electricity at different educational levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Furio and Guisasola (1998), Rainson et al. (1994), and Viennot and Rainson (1992).

  2. 2.

    Barbas and Psillos (1997), Cohen et al. (1983), Dupin and Joshua (1987), McDermott and Shafer (1992), and Shipstone et al. (1988).

  3. 3.

    Duit and von Rhöneck (1998), Psillos et al. (1988), and Testa et al. (2006).

  4. 4.

    Duschl (2000), Matthews (1994), McComas et al. (2000), Rudge and Home (2004), and Wandersee (1992).

  5. 5.

    Clough and Olson (2004), Izquierdo and Aduriz-Bravo (2003), Seroglou et al. (1998), and Solomon (2002).

  6. 6.

    Benseghir and Closset (1996), Eylon and Ganiel (1990), Furio et al. (2004), Park et al. (2001), Thacker et al. (1999), and Viennot (2001).

  7. 7.

    Cohen et al. (1983), Duit (1985), Härtel (1985), Psillos (1998), and Psillos et al. (1988).

References

  • Aguirregabiria, J.M. Hernandez, A & Rivas, M. (1992). An example of surface charge distribution on conductors carrying steady currents. American Journal of Physics, 60(2), 138–140.

    Article  Google Scholar 

  • Arons, A. (1997). Teaching introductory physics. New York: Wiley.

    Google Scholar 

  • Ausubel, D.P. (1978). Educational Psychology. A cognitive view. New York: Holt, Rineheart & Winston, Inc.

    Google Scholar 

  • Bagno, E. & Eylon, B.S. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65(8), 726–736.

    Article  Google Scholar 

  • Barbas, A. & Psillos D. (1997). Causal reasoning as a base for advancing a systemic approach to simple electrical circuits. Research in Science Education, 27(3), 445–459.

    Article  Google Scholar 

  • Berkson, W. (1974). Fields of force. The development of a world view from Faraday to Einstein. London: Routledge & Kegan Paul.

    Google Scholar 

  • Benseghir, A. & Closset, J.L. (1996). The electrostatics-electrokinetics transition: historical and educational difficulties, International Journal of Science Education, 18 (2), 179–191.

    Article  Google Scholar 

  • Borges, A. & Gilbert. J. (1999). Mental models of electricity. International Journal of Science Education, 21, 95–117.

    Google Scholar 

  • Borghi, L., De Ambrosis, A. & Mascheretti, P. (2007). Microscopic models for bringing electrostatics and currents. Physics Education, 42(2), 146–155.

    Article  Google Scholar 

  • Brown, T. M. (1969). The electrical current in early Nineteenth-Century French physics. Historical Studies in the Physical Sciences, 1, 61–103.

    Article  Google Scholar 

  • Cantor, G., Gooding, D., & James, F. A. J. L. (1991). Faraday. London: Macmillam.

    Google Scholar 

  • Chabay, R. & Sherwood, B. (2006). Restructuring the Introductory electricity and magnetism course. American Journal of Physics, 74, 329–336.

    Article  Google Scholar 

  • Chabay, R. & Sherwood, B. (2002). Matter and Interactions II: Electric and Magnetic Interactions. New York: Wiley (Last edition 2007).

    Google Scholar 

  • Chabay W. & Sherwood B. A. (1995). Instructor’s Manual of Electric and Magnetic Interactions. New York: Wiley.

    Google Scholar 

  • Closset, J. L. (1983). Sequential reasoning in electricity. In G. Delacote, A. Tiberghien, & J. Schwartz (Eds.) Research on Physics Education: Proceedings of the First International Workshop (pp. 313–319). Paris: Editions du CNRS.

    Google Scholar 

  • Cohen, R., Eylon, B. & Ganiel, U. (1983). Potential difference and current in simple electric circuit: A study of students’ concepts. American Journal of Physics, 51, 407–412.

    Article  Google Scholar 

  • Conant J.B., Nash L.K., Roller D. & Roller D.H.D. (1962). The development of the concept of electric charge. Harvard Case Histories in Experimental Science. Massachusetts: Harvard University Press.

    Google Scholar 

  • Ding, L., Chavay, R., Sherwood, B. & Beichner, R. (2006). Evaluating an assessment tool: Brief electricity & magnetism assessment. Physical Review Special Topics: Physics Education Research 1, 10105.

    Google Scholar 

  • Driver, R., Leach, J., Scott, P. & Wood-Robinson, C. (1994). “Young people’s understanding of science concepts: implications of cross-age studies for curriculum planning”. Studies in Science Education, 24, 75–100.

    Article  Google Scholar 

  • Duit, R. (1985). In search of an energy concept. In R. Driver & R. Millar (Eds.), Energy matters – Proceedings of an invited conference: Teaching about energy within the secondary science curriculum (pp 67–101). Fairbairn House: The University of Leeds.

    Google Scholar 

  • Duit, R.: 2009, Bibliography of Students’ and teachers’ conceptions and science education in http://www.ipn.uni-kiel.de/aktuell/stcse/. Accessed 25 January 2012.

  • Duit, R. & von Rhöneck, C. (1998). Learning and understanding key concepts of electricity. In A. Tiberghien, E.L. Jossem & J. Barojas (Eds.) Connecting research in physics education. Boise, Ohio: International Commission on Physics Education-ICPE books. http://www.physics.ohio-state.edu/~jossem/ICPE/TOC.html. Accessed 20 January 2012.

  • Duit, R. & Treagust, D.F. (1998). Learning in science: From behaviourism towards social constructivism and beyond. In B. Fraser & K. Tobin (Eds.) International handbook of science education (pp. 3–25). Dordrecht, Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Dupin, J. & Joshua, S. (1989). Analogies and ‘modelling analogies’ in teaching some examples in basic electricity. Science Education, 73(2), 207–224.

    Article  Google Scholar 

  • Dupin, J. & Joshua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evaluation. Journal of Research in Science Teaching, 6, 791–806.

    Article  Google Scholar 

  • Duschl, R.A. (1994). Research on the history and philosophy of science . In D.L. Gabels (ed.) Handbook of Research on Science Teaching and Learning (pp. 443–465). New York: McMillan Pub.Co.

    Google Scholar 

  • Duschl, R.A. (2000). Making the nature of science explicit. In R. Millar, J. Leach & J. Osborne (eds.). Improving Science Education- The contribution of Research. Buckingham: Open University Press.

    Google Scholar 

  • Engelhardt P.V. & Beichner R.J. (2004), Students’ understanding of direct current resistive electrical circuits, American Journal of Physics 72, 98–115.

    Article  Google Scholar 

  • Etkina E., Van Heuvelen A., White-Brahmia S., Brookes D.T., Gentile M., Murthy S., Rosengrant D., & Warren A. (2006). Scientific abilities and their assessment. Physical Review Special Topics: Physics Education Research, 2, 020103, 1–15.

    Google Scholar 

  • Eylon, B. & Ganiel, U. (1990). Macro–micro relationship: the missing link between electrostatics and electrodynamics in students’ reasoning. International Journal of Science Education, 12 (1) 79–94.

    Article  Google Scholar 

  • Fox, R. (1990). Laplacian Physics. Companion to the History of Modern Science, Routledge.

    Google Scholar 

  • Furio, C., & Guisasola, J. (1998). Difficulties in learning the concept of electric field. Science Education, 82(4), 511–526.

    Article  Google Scholar 

  • Furio, C., Guisasola, J., Almudi, J.M., & Ceberio, M.J. (2003). Learning the electric field concept as oriented research activity. Science Education, 87(5), 640–662.

    Article  Google Scholar 

  • Furio C., Guisasola, J., & Almudi, J.M. (2004). Elementary electrostatic phenomena: historical hindrances and student’s difficulties. Canadian Journal of Science, Mathematics and Technology, 4(3), 291–313.

    Article  Google Scholar 

  • Galili I. (1995). Mechanics background influences students’ conceptions in electromagnetism. International Journal of Science Education, 17(3), 371–387.

    Article  Google Scholar 

  • Greca, I. & Moreira M.A. (1997). The kinds of mental representation - models, propositions and images- used by college physics students regarding the concept of field. International Journal of Science Education, 19(6), 711–724.

    Article  Google Scholar 

  • Guisasola, J., Almudí, J.M., Salinas, J., Zuza, K. & Ceberio, M. (2008). The gauss and ampere laws: different laws but similar difficulties for students learning. European Journal of Physics, 29, 1005–1016.

    Article  Google Scholar 

  • Guisasola, J., Zubimendi, J.L., Almudi, J.M. & Ceberio, M. (2002). The evolution of the concept of capacitance throughout the development of the electric theory and the understanding of its meaning by University students. Science & Education, 11, 247–261.

    Google Scholar 

  • Guisasola, J, Zubimendi. J.L. & Zuza, K. (2010) How much have students learned? Research-based teaching on electrical capacitance, Physical Review Special Topic-Physics Education Research 6, 020102 1–10.

    Google Scholar 

  • Guisasola, J. & Montero, A. (2010), An energy-based model for teaching the concept of electromotive force. Students’ difficulties and guidelines for a teaching sequence. In G. Çakmakci & M. F. Tasar (eds) Contemporary science education research: learning and assessment (pp. 255–258). Ankara, Turkey: Pegem Akademi.

    Google Scholar 

  • Gunstone, R., Mulhall, P. & Brian McKittrick, B. (2009). Physics Teachers’ Perceptions of the Difficulty of Teaching Electricity. Research in Science Education, 39, 515–538.

    Article  Google Scholar 

  • Guruswamy, C., Somers, M. D. & Hussey, R. G. (1997). Students’ understanding of the transfer of charge between conductors, Physics Education, 32(2) 91–96.

    Article  Google Scholar 

  • Halloun I. & Hestane D. (1985) Common sense conceptions about motion, American Journal of Physics 53, 1056–1065.

    Article  Google Scholar 

  • Harman, P. M. (1982). Energy, force and matter. The conceptual development of nineteenth-century physics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Härtel, H. (1982). The electric circuit as a system: A new approach. European Journal of Science Education, 4(1), 45–55.

    Article  Google Scholar 

  • Härtel, H. (1985). The electric voltage: What do students understand? What can be done to help for a better understanding? In R. Duit, W. Jung & C. von Rhöneck (eds.), Aspects of Understanding Electricity: Proceedings of an International Workshop (pp. 353–362). Ludwingsburg: IPN-Kiel.

    Google Scholar 

  • Härtel, H. (1987). A Qualitative Approach to Electricity. Palo Alto, California: Institute for Research on Learning. http://www.astrophysikunikiel.de/~hhaertel/PUB/voltage_IRL.pdf. Accessed 12 November 2011.

  • Härtel, H. (1993). New approach to introduce basic concepts in Electricity. Teoksessa M. Caillot (ed.) Learning electricity and electronic with advance educational technology (pp. 5–21). NATO ASI Series. Springer-Verlag.

    Google Scholar 

  • Heald, M.A. (1984). Electric field and charges in elementary circuits. American Journal of Physics 52(6), 522–526.

    Article  Google Scholar 

  • Heilbron, J.L. (1979). Electricity in the 17th and 18th centuries. A study of early modern Physics, California: University of California Press.

    Google Scholar 

  • Hirvonen, P.E. (2007). Surface-charge-based micro-models a solid foundation for learning about direct current circuits. European Journal of Physics, 28, 581–592.

    Article  Google Scholar 

  • Jackson, J.D. (1996). Surface charges on circuit wires and resistors plays three roles. American Journal of Physics 64(7), 855–870.

    Article  Google Scholar 

  • Jefimenko O.D. (1966) Electricity and Magnetism. NewYork: Appleton-Century Crofts.

    Google Scholar 

  • Jimenez, E. & Fernandez, E. (1998). Didactic problems in the concept of electric potential difference and an analysis of its philogenesis, Science & Education 7, 129–141.

    Article  Google Scholar 

  • Kipling D.L. & Hurd J.J., (1958). The Origins and Growth of Physical Science. United Kingdom: Penguin Books.

    Google Scholar 

  • Kuhn, T. (1984). Professionalization recollected in tranquillity. ISIS, 45, 276, 29–33.

    Article  Google Scholar 

  • Kenosen M.H.P., Asikainen M.A. & Hirvonen P.E. (2011). University students’ conceptions of the electric and magnetic fields and their interrelationships, European Journal of Physics 32, 521–534.

    Article  Google Scholar 

  • Liegeois, L., Mullet, E. (2002). High School Students’ Understanding of Resistance in Simple Series Electric Circuits. International Journal of Science Education, 24(6), 551–64.

    Article  Google Scholar 

  • Licht, P. (1991). Teaching electrical energy, voltage and current: an alternative approach. Physics Education, 25, 271–277.

    Google Scholar 

  • Lijnse, P. & Klaassen, K., (2004). Didactical structures as an outcome of research on teaching-learning sequences?. International Journal of Science Education, 26(5), 537–554.

    Article  Google Scholar 

  • Maloney D P, O’kuma T L, Hieggelke C J and Van Heuvelen A (2001) Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics S69 (7), 12–23.

    Article  Google Scholar 

  • Mäntylä, T. (2011). Didactical reconstruction of processes in Knowledge construction: Pre-service physics teachers learning the law of electromagnetic induction. Research in Science Education. DOI 10.1007/s11165-011-9217-6.

    Google Scholar 

  • Matthews, M.R. (1994). Science teaching: the role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • Maxwell, J. C. (1865). Dynamic theory of the electromagnetic field. Philosophical transactions, 155, 456–512.

    Article  Google Scholar 

  • McComas, W.F., Clough, M.P. & Almazora, H. (2000) The role and the character of the nature of science in science education. In W.F. McComas (Ed.): The Nature of Science in Science Education. Rationales and strategies (pp. 3–39). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • McDermott, L.C. & Shaffer P.S. (1992). Research as a guide for curriculum development: An example from introductory electricity, Part I: Investigation of student understanding. American Journal of Physics, 60, 994–1003.

    Article  Google Scholar 

  • Moreau, W.R. & Ryan, S.J. (1985). Charge density in circuits. American Journal of Physics 53(6), 552–554.

    Article  Google Scholar 

  • Mosca, E.P. & De Jong, M.L. (1993). Implications of using the CASTLE model, The Physics Teacher 31, 357–359.

    Article  Google Scholar 

  • Mulhall, P., Mckittrick, B. & Gunstone R. (2001). A perspective on the resolution of confusions in the teaching of electricity, Research in Science Education, 31, 575–587.

    Article  Google Scholar 

  • Muller, R. (2012). A semiquantitative treatment of surface charges in DC circuits, American Journal of Physics, 80, 782–788.

    Article  Google Scholar 

  • Nardi, R. & Carvhalo, A.M.P. (1990). A genese, a psicogenese e a aprendizagem do conceito de campo: subsidios para a construção do ensino desse conceito. Caderno Catarinense do Ensino de Física, 7, pp. 46–69.

    Google Scholar 

  • National Research Council (1996). National Science education standards. Washington DC: National Academic Press.

    Google Scholar 

  • Nersseian, N.J. (1995). Should physicist preach What they practice?. Science and Education, 4, 203–226.

    Article  Google Scholar 

  • Niaz, M. (2008) What ‘ideas-about-science’ should be taught in school science? A chemistry teacher’s perspective. Instructional Science 36, 233–249.

    Article  Google Scholar 

  • Oliva, J.M. (1999). Algunas reflexiones sobre las concepciones alternativas y el cambio conceptual. Enseñanza de las Ciencias 17(1), 93–107.

    Google Scholar 

  • Park, J., Kim, I., Kim, M. & Lee, M. (2001). Analysis of students’ processes of confirmation and falsification of their prior ideas about electrostatics. International Journal of Science Education 23(12), 1219–1236.

    Article  Google Scholar 

  • Pancaldi, G. (1990). Electricity and life. Volta’s path to the battery. Historical studies in the physical and biological sciences, 21, 123–160.

    Article  Google Scholar 

  • Periago, M.C. & Bohigas, X. (2005). A study of second year engineering students alternative conceptions about electric potential, current intensity and Ohms’ law. European Journal of Engineering education 30(1), 71–80.

    Article  Google Scholar 

  • Peters, P. C. (1984). The role of induced emf’s in simple circuits. American journal of Physics 52(3), 208–211.

    Article  Google Scholar 

  • Pintó, R. (2005). Introducing curriculum innovations in science: identifying teachers’ transformations and the design of related teacher education, Science Education 89(1), 1–12.

    Article  Google Scholar 

  • Pocovi, M.C. & Finley, F. (2002). Lines of force: Faraday’s and Students’ views. Science & Education 11, 459–474.

    Google Scholar 

  • Preyer, N.W. (2000). Surface charges and fields of simple circuits. American Journal of Physics 68, 1002–1006.

    Article  Google Scholar 

  • Psillos, D. (1998). Teaching introductory electricity. In A.Tiberghien, E.L. Jossem, & J. Barojas (Eds.), Connecting research in physics education with teacher education. International Commission on Physics Education.

    Google Scholar 

  • Psillos D., Koumaras P & Tiberghien A. (1988) Voltage presented as a primary concept in an introductory teaching sequence on DC circuits. International Journal of Science Education, 10, 1, 29–43.

    Article  Google Scholar 

  • Rainson, S., Tranströmer, G., & Viennot, L. (1994). Students’ understanding of superposition of electric fields. American Journal of Physics, 62(11), 1026–1032.

    Article  Google Scholar 

  • Reif, F. (1982) Generalized Ohm’s law, potential difference, and voltage measurements. American Journal of Physics 50(11), 1048–1049.

    Article  Google Scholar 

  • Rocard, M., Csermely, P., Jorde, D., Dieter, L., Walberg-Henriksson, H. & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Retrieved May 2012, http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf

  • Roche, J. (1989) Applying the history of electricity in the classroom: a reconstruction of the concept of ‘potential’. In M. Shortland & A. Warwick Teaching the history of Science Oxford: Basil Blackwell.

    Google Scholar 

  • Roche, J. (1987) Explaining electromagnetic induction: a critical re-examination. Physics Education 22, 91–99.

    Article  Google Scholar 

  • Romer, R.H. (1982) What do ‘voltmeters’ measure?: Faraday’s law in a multiply connected region. American Journal of Physics 50(12), 1089–1093.

    Article  Google Scholar 

  • Rosser W.G. (1963) What makes an electric current flow. American Journal of Physics 31, 884–5

    Article  Google Scholar 

  • Rosser W G (1970) Magnitudes of surface charge distributions associated with electric current flow. American Journal of Physics, 38 264–6.

    Article  Google Scholar 

  • Rudge, D. & Home, E. (2004). Incorporating History into Science Classroom. The Science Teacher 71(9), 52–57.

    Google Scholar 

  • Saarelainen, M., Laaksonen, A. & Hirvonen, P.E. (2007). Students’ initial knowledge of electric and magnetic fields – more profound explanations and reasoning models for undesired conceptions. European Journal of Physics 28, 51–60.

    Article  Google Scholar 

  • Saarelainen, M. & Hirvonen, P.E. (2009) Designing a teaching sequence for electrostatics at undergraduate level by using educational reconstruction, Latin-American Journal of Physics Education 3, 518–526.

    Google Scholar 

  • Saglam, M. & Millar, R. (2005). Diagnostic Test of Students’ Ideas in Electromagnetism. Research Paper Series. University of York (UK).

    Google Scholar 

  • Schagrin, M.L. (1963) Resistance to Ohm’s Law’, American Journal of Physics, 31(7), 536–547.

    Article  Google Scholar 

  • Shaffer, P.S. & McDermott L.C. (1992). Research as a guide for curriculum development: An example from introductory electricity, Part II: Design of instructional strategies. American Journal of Physics. 60, 1003–1013.

    Article  Google Scholar 

  • Seroglou, F., Panagiotis, K. & Vassilis, T. (1998) History of Sciences and instructional design: the case of electromagnetism, Science and Education, 7, 261–280.

    Article  Google Scholar 

  • Sharma N.L. (1988) Field versus action at-a-distance in a static situation. American Journal of Physics 56 (5), 420–423.

    Article  Google Scholar 

  • Sherwood, B. & Chabay R. (1999) A unified treatment of electrostatics and circuits. http://matterandinteractions.org/Content/Articles/circuit.pdf. Accessed Retrieved 10 August 2011.

  • Shipstone, D.M., von Rhöneck, C., Jung, W., Karrqvist, C., Dupin, J., Joshua, S. & Licht, P. (1988). A study of secondary students’ understanding of electricity in five European countries. International Journal of Science Education 10, 303316.

    Article  Google Scholar 

  • Silva, A.A. & Soares R. (2007) Voltage versus current, or the problem of the chicken and the egg, Physics Education 42(5), 508–515.

    Article  Google Scholar 

  • Smith, D. P. & van Kampen, P. (2011) Teaching electric circuits with multiple batteries: A qualitative approach. Physical Review Special topics- Physics Education Research 7, 020115.

    Google Scholar 

  • Solomon, J. (2002). Science Stories and Science Texts: What Can They Do for Our Students?, Studies in Science Education, 37, 85–105.

    Article  Google Scholar 

  • Sommerfield A (1952). Electrodynamics. New York: Academic Press.

    Google Scholar 

  • Steinberg, M.S. & Wainwright, C. (1993). Using models to teach electricity-The CASTLE project, The Physics Teacher, 31(6), 353–355.

    Article  Google Scholar 

  • Steinberg, M.S. (1992). What is electric potential? connecting Alessandro Volta and contemporary students. In Proceeding of the Second International Conference on the History and Philosophy of Science and Science Teaching, vol. II, 473–480. Kingston.

    Google Scholar 

  • Stocklmayer, S. & Treagust, D.F. (1994) A historical analysis of electric current in textbooks: a century of influence on physics education, Science & Education, 3, 131–154.

    Google Scholar 

  • Stocklmayer, S. & Treagust, D.F. (1996). Images of electricity: How novices and experts model electric current? International Journal of Science Education 18, 163–178.

    Article  Google Scholar 

  • Stocklmayer, S. (2010) Teaching direct current theory using a field model, International Journal of Science Education 32 (13), 1801–1828.

    Article  Google Scholar 

  • Sutton, G. (1981) The politics of science in early Napoleonic France: The case of the voltaic pile. Historical Studies in the Physical Sciences, 11(2), 329–366.

    Article  Google Scholar 

  • Taton R. (1988). Histoire Generale des Sciences. Paris: Presses Universitaires de France.

    Google Scholar 

  • Testa, I., Michelini, M. & Sassi, E. (2006). Children’s Naive Ideas/Reasoning About Some Logic Circuits Explored In an Informal Learning Environment. In G. Planinsic & A. Mohoric (eds). Selected contributions to Third International GIREP Seminar (pp. 371–378). Ljubljana, Slovenia: University of Ljubljana.

    Google Scholar 

  • Thackray, A. (1980). History of Science, in P.T. Durbin (Ed.). A guide to the culture of science, technology and medicine, New York: Free Press.

    Google Scholar 

  • Thacker, B.A. Ganiel, U. & Boys, D. (1999). Macroscopic phenomena and microscopic processes: Student understanding of transients in direct current electric circuits. Physics Education Research-American Journal of Physics, 67(7), S25–S31.

    Google Scholar 

  • Törnkvist, S., Pettersson, K.A. & Tranströmer, G. (1993) Confusion by representation: on student’s comprehension of the electric field concept, American Journal of Physics, 61 (4), 335–338.

    Article  Google Scholar 

  • Varney, R.N. & Fisher, L.H (1980) Electromotive force: Volta’s forgotten concept. American Journal of Physics 48 (5), 405–408.

    Google Scholar 

  • Viennot, L., & Rainson, S. (1992). Students’ reasoning about the superposition of electric fields. International Journal of Science Education, 14(4), 475–487.

    Article  Google Scholar 

  • Viennot, L. & Rainson, S. (1999). Design and evaluation of research-based teaching sequence: the superposition of electric field. International Journal of Science Education, 21 (1), 1–16.

    Article  Google Scholar 

  • Viennot, L. (2001). Reasoning in Physics. The part of Common Sense. Dordrecht, Netherlands: Kluwer academic Publisher.

    Google Scholar 

  • Vosniadou, S. (2002). On the Nature of Naïve Physics, in Reconsidering the Processes of Conceptual Change (pp. 61–76), edited by M. Limon & L. Mason, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Walz, A. (1984) Fields that accompany currents. In R. Duit, W. Jung., & Ch. von Rhöneck, Eds., Aspects of understanding electricity (pp. 403–412). Keil, Germany: Schmidt & Klaunig.

    Google Scholar 

  • Wandersee, J.H. (1992). The Historicality of cognition: implications for Science Education Research, Journal of Research in Science Teaching, 29(4), 423–434.

    Article  Google Scholar 

  • Wandersee, J.H., Mintzes, J.J. & Novak, J.D. (1994). Research on alternative conceptions in Science. Handbook of Research on Science Teaching and Learning. Nueva York: McMillan Publishing Company.

    Google Scholar 

  • Warney, R.N. & Fischer, L.H. (1980). Electromotive force: Volta’s forgotten concept. American Journal of Physics 48, 405–408.

    Article  Google Scholar 

  • Watts, M. & Taber, K.S. (1996). An explanatory Gestalt of essence: students’ conceptions of the «natural» in physical phenomena. International Journal of Science Education, 18(8), 939–954.

    Article  Google Scholar 

  • Whittaker, E. (1987). A History of the Theories of Aether and Electricity, U.S.A: American Institute of Physics.

    Google Scholar 

  • Willians P, L. (1962) The Physical Sciences in the first half of the nineteenth Century: Problems and Sources. History of Science. 1, 1–15.

    Google Scholar 

  • Wise, N.M. (1990) Electromagnetic Theory in the Nineteenth Century, Companion to the History of Modern Science, Routledge.

    Google Scholar 

  • Young H.D. & Freedman R.A., 2008, University Physics with Modern Physics vol. 2, 12th edition. New York: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenaro Guisasola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guisasola, J. (2014). Teaching and Learning Electricity: The Relations Between Macroscopic Level Observations and Microscopic Level Theories. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_5

Download citation

Publish with us

Policies and ethics