Skip to main content

Accreted Turbidite Fans and Remnant Ocean Basins in Phanerozoic Orogens: A Template for a Significant Precambrian Crustal Growth and Recycling Process

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

Convergent margin settings involving accretion of large turbidite fans with slivers of oceanic basement reflect important cites of continental crustal growth and recycling. Accreted crust consists of an upper layer of recycled arc and/or crustal detritus (turbidites) underlain by a layer of tectonically imbricated upper oceanic crust, and/or thinned continental crust, along with underplated magmatic material. When oceanic crust is converted to lower crust, it represents a juvenile addition to the continent. This two-tiered accreted crust is commonly of average continental crustal thickness and isostatically balanced near sea level. The Paleozoic part of the Tasman Orogen (Lachlan-type) of eastern Australia is the archetypical example of a turbidite-dominated accretionary orogen. The Neoproterozoic Damaran Orogen of SW Africa is similar to the Lachlan-type except that it was incorporated into Gondwana via a continent-continent collision, whereas the Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic granitoids and volcanic deposits constrain the timing of chemical maturation and cratonization. Cratonization and chemical maturation of continental crust is fostered in these orogenic settings because turbidites represent fertile sources for magma genesis, particularly for the S-type granites that are common in these orogens. The structural style and lithotectonic assemblages of the three Phanerozoic examples is remarkably similar to the Archean Jardine turbidites, which were accreted to the Wyoming craton by 2.8 Ga. Recognition of similar orogens in the Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of the upper ocean crust or by underplating of mafic magmas does not readily result in the formation of zircon-bearing magmas at the time of accretion. This crust only produces significant zircon when and if it partially melts, which may be long after the actual time of accretion. Consequently, the significance of this process over earth history is distorted compared to more zircon-rich orogenic processes in probability density-based analyses of crustal growth, but is recorded in Lu-Hf model ages of zircons from post-accretion magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CJ, Kelly S (1998) Provenance of Permian-Triassic and Ordovician metagraywacke terranes in New Zealand: evidence from 40Ar/39Ar dating of detrital micas. Geol Soc Am Bull 110:422–432

    Google Scholar 

  • Adams CJ, Barley ME, Fletcher IR, Pickard AL (1998) Evidence from U-Pb zircon and 40Ar/39Ar muscovite detrital mineral ages in metasandstones for movement of the Torlesse suspect terrane around the eastern margin of Gondwanaland. Terra Nova 10:183–189

    Google Scholar 

  • Adams CJ, Cambell HJ, Griffin WL (2007) Provenance comparisons of Permian to Jurassic tectostratigraphic terranes in New Zealand: perspectives from detrital zircon age patterns. Geol Mag 144:701–729

    Google Scholar 

  • Adams CJ, Pankhurst RJ, Maas R, Millar IL (2005) Nd and Sr isotopic signatures of metasedimentary terranes around the South Pacific margin, and implications for their provenance. In Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane Processes at the Margins of Gondwana. Geological Society of London (Special Publication, 246), London, pp 113–142

    Google Scholar 

  • Albarède F (1998) The growth of continental crust. Tectonophys 296:1–14

    Google Scholar 

  • Armstrong RL (1981) The persistent myth of crustal growth. Aust J Earth Sci 38:613–630

    Google Scholar 

  • Barnes S (1983) Pan-African serpentinites in central south west Africa/Namibia and the chemical classification of serpentinites. In Miller RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia, Geological Society of South Africa Special Publication 11, pp 147–155

    Google Scholar 

  • Barnes S, Sawyer E (1980) An alternative model for the Damara mobile belt: ocean crust subduction and continental convergence. Precam Res 13:297–336

    Google Scholar 

  • Basson IJ, Greenway G (2004) The Rössing uranium deposit: a product of late-kinematic localization of uriniferous granites in the Central Zone of the Damara Orogen: Namibia. J Afr Earth Sci 38:413–435

    Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, et al (2010) The growth of the continental crust: constraints from zircon Hf-isotopic data. Lithos 119:457–466

    Google Scholar 

  • Bickford ME, Hill BM (2007) Does the arc accretion model adequately explain the Paleoproterozoic evolution of southern Laurentia?: an expanded interpretation. Geology 35:167–170

    Google Scholar 

  • Bierlein FP, Arne DC, Keay SM, McNaughton NJ (2001a) Timing relationships between felsic magmatism and mineralisation in the central Victorian gold province, southeast Australia. Aust J Earth Sci 48:883–899

    Google Scholar 

  • Bierlein FP, Hughes M, Dunphy J, McKnight S, Reynolds P, Waldron H (2001b) Tectonic and economic implications of trace element, 40Ar/39Ar and Sm-Nd data from mafic dykes associated with orogenic gold mineralisation in central Victoria, Australia. Lithos 18:1–31

    Google Scholar 

  • Bierlein FP, Foster DA, Gray DR, Davidson GJ (2005b) Timing of orogenic gold mineralization in northeast Tasmania – implications for the tectonic and metallogenic evolution of Palaeozoic SE Australia. Min Dep 39:0–903

    Google Scholar 

  • Bradshaw JD (1989) Cretaceous geotectonic patterns in the New Zealand region. Tectonics 8:803–820

    Google Scholar 

  • Bradshaw JD (1993) A review of the Median Tectonic Zone: terrane boundaries and terrane amalgamation near the Median Tectonic Line. New Zeal J Geol Geop 36:117–125

    Google Scholar 

  • Busby C (2004) Continental growth at convergent margins facing large ocean basins: a case study from Mesozoic convergent-margin basins of Baja California, Mexico. Tectonophysics 392:241–277

    Google Scholar 

  • Casella CJ, Levay J, Eble E, Hirst B, et al (1982) Precambrian Geology of the southwestern Beartooth Mountains, Yellowstone national Park, Montana and Wyoming. In Mueller PA, Wooden JL (eds) Precambrian Geology of the Beartooth Mountains, Montana and Wyoming. Montana Bureau of Mines and Geology (Special Publications, 84), Montana, pp 1–24

    Google Scholar 

  • Cawood PA (1987) Stratigraphic and structural relations of strata enclosing the Dun Mountain ophiolite belt in the Arthurton-Clinton region, Southland. NZJ Geol Geophys 30:19–36

    Google Scholar 

  • Cawood PA (2005) Stratigraphic and structural relations of strata enclosing the Dun Mountain ophiolite belt in the Arthurton-Clinton region, Southland, New Zealand. New Zea J Geol Geop 30:19–36

    Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Google Scholar 

  • Cayley RA, Taylor DH, VandenBerg AHM, Moore DH (2002) Proterozoic—early Palaeozoic rocks and the Tyennan Orogeny in central Victoria: the Selwyn block and its tectonic implications. Aust J Earth Sci 49:225–254

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. T Roy Soc Edin 83:1–26

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Google Scholar 

  • Chappell BW, White AJR, Hine R (1988) Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. Aust J Earth Sci 35:505–521

    Google Scholar 

  • Chen YD, Williams IS (1991) Zircon inheritance in mafic inclusions from Bega Batholith granites, southeastern Australia: an ion microprobe study. J Geophys Res 95:17787–17796

    Google Scholar 

  • Claypool AL, Klepeis KA, Clarke GL et al (2001) The evolution and exhumation of Early Cretaceous lower crustal granulites during changes in plate boundary dynamics, Fiordland, New Zealand. Geol Soc Amer Ab Prog 33:265

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Plan Sci Let 86:287–306

    Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Min Pet 88:354–371

    Google Scholar 

  • Collins WJ (1996) Lachlan Fold Belt granitoids: products of three-component mixing. T Roy Soc Ed-Earth Sci 87:171–182

    Google Scholar 

  • Collins WJ (1998) Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Aust J Earth Sci 45:483–500

    Google Scholar 

  • Collins WJ (2002) Nature of extensional accretionary orogens. Tectonics 21:1024–1036

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Min Pet 80:189–200

    Google Scholar 

  • Collins WJ, Hobbs BE (2001) What caused the Early Silurian change from mafic to silicic magmatism in the eastern Lachlan Fold Belt? Aust J Earth Sci 48:25–41

    Google Scholar 

  • Condie KC (2008) Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids. Geology 36:611–614

    Google Scholar 

  • Condie KC, Bickford ME, Aster RC, et al (2011) Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol Soc Am Bull 123:951–957

    Google Scholar 

  • Coombs DS, Cox SC (1991) Low- and very low-grade metamorphism in southern New Zealand. Geol Soc New Zea Misc Pub 58:87

    Google Scholar 

  • Coombs DS, Landis CA, Norris RJ, et al (1976) The Dun Mountain Ophiolite belt, New Zealand, its tectonic setting, constitution, and origin, with special reference to the southern portion. Am J Sci 276:561–603

    Google Scholar 

  • Cooper RA, Tulloch AJ (1992) Early Paleozoic terranes in New Zealand and their relationship to the Lachlan Fold Belt. Tectonophysics 214:129–144

    Google Scholar 

  • Corner B (2000) Crustal framework of Namibia derived from magnetic and gravity data. In Miller RMcG (ed) Henno Martin Commemorative Volume. Communications of Geological Survey of Nambia 12, 13–19

    Google Scholar 

  • Coward MP (1981) The junction between Pan African Mobile Belts in Namibia: its structural history. Tectonophysics 76:59–73

    Google Scholar 

  • Coward MP (1983) The tectonic history of the Damaran Belt. In Miller RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia. Geological Society of South Africa (Special Publications, 11), pp 409–421

    Google Scholar 

  • Crawford AJ, Keays RR (1978) Cambrian greenstone belts in Victoria: marginal sea crust slices in the Lachlan Fold Belt of southeastern Australia. Earth Planet Sci Let 41:197–208

    Google Scholar 

  • Crawford AJ, Keays RR (1987) Petrogenesis of Victorian Cambrian tholeiites and implications for the origin of associated boninites. J Pet 28:1075–1109

    Google Scholar 

  • Curray JR, Emmel FJ, Moore DG, Raitt RW (1982) Structure, tectonics, and geological history of the northeastern Indian Ocean. In: Nairn AEM (ed) The ocean basins and margins 5. Plenum Press, New York, pp 399–450

    Google Scholar 

  • Daczko NR, Klepeis KA, Clarke GL (2001) Evidence of Early Cretaceous collisional-style orogenesis in northern Fiordland, New Zealand, and its effect on the evolution of the lower crust. J Struc Geol 23:693–713

    Google Scholar 

  • de Kock GS (1992) Forearc basin evolution in the Pan-African Damara Belt, central Namibia: the Hureb Formation of the Khomas Zone. Precam Res 57:169–194

    Google Scholar 

  • de Kock GS, Eglington B, Armstrong RA et al (2000) U-Pb and Pb-Pb ages of the Naauwpoort Rhyolite, Kawakeup leptite and Okongava Diorite: implications for the onset of rifting and of orogenesis in the Damara Belt, Namibia. In Miller RMcG (ed) Henno Martin Commemorative Volume, Communications Geological Survey of Nambia 12, pp 81–88

    Google Scholar 

  • Elburg M (1996) U-Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite; evidence for magma mingling. Contrib Min Pet 123:177–189

    Google Scholar 

  • Fergusson CL (1987) Early Palaeozoic backarc deformation in the Lachlan Fold Belt, southeastern Australia: implications for terrane translations in eastern Gondwanaland. In Leitch EC, Scheibner E (eds) Terrane accretion and orogenic belts, (Geodynamics Series) Vol. 19. American Geophysical Union, Washington, DC, pp 39–56

    Google Scholar 

  • Fergusson CL, Coney PJ (1992a) Implications of a Bengal Fan-type deposit in the Paleozoic Lachlan fold belt of southeastern Australia. Geology 20:1047–1049

    Google Scholar 

  • Fergusson CL, Coney PJ (1992b) Convergence and intraplate deformation in the Lachlan Fold Belt of southeastern Australia. Tectonophysics 214:417–439

    Google Scholar 

  • Fergusson CL, Fanning CM (2002) Late Ordovician stratigraphy, zircon provenance and tectonics, Lachlan Fold Belt, southeastern Australia. Aust J Earth Sci 49:423–436

    Google Scholar 

  • Fergusson CL, VandenBerg AHM (1990) Middle Paleozoic thrusting in the easternLachlan Fold Belt, southeastern Australia. J Struct Geol 12:577–589

    Google Scholar 

  • Festa A, Dilek Y, Pini GA et al (2012) Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formation: redefining and classifying mélanges. Tectonophysics 568–569:7–24

    Google Scholar 

  • Finzel ES, Trop JM, Ridgeway KD, Enkelmann E (2011) Upper plate proxies for flat-slap subduction processes in southern Alaska. Earth Plan Sci Let 303:348–360

    Google Scholar 

  • Foden J, Sandiford M, Doherty-Page J, Williams I (1999) Geochemistry and geochronology of the Rathjan Gneiss: implications for the early tectonic evolution of the Delamerian Orogen. Aust J Earth Sci 46:377–389

    Google Scholar 

  • Foster DA, Gray DR (2000) The structure and evolution of the Lachlan Fold Belt (Orogen) of eastern Australia. An Rev Earth Plan Sci 28:47–80

    Google Scholar 

  • Foster DA, Mueller PA, Mogk DW, Wooden JL, Vogl JJ (2006) Proterozoic evolution of the western margin of the Wyoming Craton: implications for the tectonic and magmatic evolution of the northern Rocky Mountains. Can J Earth Sci 43:1601–1619

    Google Scholar 

  • Foster DA, Gray DR (2008) Paleozoic crustal growth, structure, strain rate, and metallogeny in the Lachlan Orogen, Eastern Australia. In Spencer JE, Titley SR (eds) Ores and Orogenesis: Circum-Pacific Tectonics, Geological Evolution, and Ore Deposits. Arizona Geological Society Dig 22, pp 213–225

    Google Scholar 

  • Foster DA, Gray DR, Bucher M (1999) Chronology of deformation within the turbidite-dominated Lachlan orogen: Implications for the tectonic evolution of eastern Australia and Gondwana. Tectonics 18:452–485

    Google Scholar 

  • Foster DA, Gray DR, Spaggiari CV (2005) Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic back-arc basins. Geol Soc Am 117:105–116

    Google Scholar 

  • Foster DA, Gray DR, Kwak TAP, Bucher M (1998) Chronology and tectonic framework of turbidite-hosted gold deposits in the western Lachlan Fold Belt, Victoria: 40Ar–39Ar results. Ore Geol Rev 13:229–250

    Google Scholar 

  • Foster DA, Gray DR (2007) Strain rate in Paleozoic thrust sheets, the western Lachlan Orogen, Australia: strain analysis and fabric geochronology. In Sears JW, Harms T, Evenchick CA (eds) Whence the mountains? enquiries into the evolution of orogenic systems: a volume in honor of Raymond Price. Geol Soc Am SP 433:349–368

    Google Scholar 

  • Foster DA, Gray DR, Spaggiari C et al (2009) Palaeozoic Lachlan Orogen, Australia; accretion and construction of continental crust in a marginal ocean setting: isotopic evidence from Cambrian metavolcanic rocks. In Cawood PA, Kroner A (eds) Earth accretionary systems in space and time, Geological Society Special Publication 318, pp 329–349, doi: 10.1144/SP318.12

    Google Scholar 

  • Foster DA, Mogk DW, Henry DJ, Mueller PA (2011) Evolution of Archean rocks of the south Snowy Block, Yellowstone National Park: results of an REU site project. Geol Soc Am Ab Prog 43:435

    Google Scholar 

  • Foster DA, Mueller PA, Heatherington A et al (2012a) Lu-Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana. Lithos 142–143:216–225. doi: 10.1016/j.lithos.2012.03.005

    Google Scholar 

  • Foster DA, Goscombe BA Newstead B et al (2012b) Rodinia-Gondwana supercontinent cycle refined be detrtial zircons from the Damara Orogen. Geol Soc Am Ab Prog 44/7:175

    Google Scholar 

  • Fuis GS, Plfker G (1991) Evolution of deep structure along the Trans-Alaska Crustal Transect, Chugach Mountains and Copper River Basin, Southern Alaska. J Geophys Res 96:4229–4253

    Google Scholar 

  • Gasser D, Bruand E, Stuwe K, et al (2011) Formation of a metamorphic complex along an obliquely convergent margin: structural and thermochronological evolution of the Chugach metamorphic complex, southern Alaska. Tectonics doi:10.1029/2010TC002776

    Google Scholar 

  • Glen RA (2005) The Tasmanides of eastern Australia. In Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane Processes at the Margins of Gondwana, Geological Society of London Special Publication, 246, pp 23–96

    Google Scholar 

  • Glen RA, Walshe JL, Barron LM, Watkins JJ (1998) Ordovician convergent margin volcanism and tectonism in the Lachlan sector of east Gondwana. Geology 26:751–754

    Google Scholar 

  • Glen RA, Crawford AJ, Percival IG, Barron LM (2007) Early Ordovician development of the Macquarie Arc, Lachlan Orogen, New South Wales. Aust J Earth Sci 54:167–179

    Google Scholar 

  • Goscombe B, Gray DR, Hand M (2004) Variation in metamorphic style along the northern margin of the Damara Orogen, Namibia. J Pet 45:1261–1295

    Google Scholar 

  • Gray CM (1984) An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Plan Sci Let 70:47–60

    Google Scholar 

  • Gray CM (1990) A strontium isotopic traverse across the granitic rocks of southeastern Australia: petrogenetic and tectonic implications. Aust Earth Sci 37:331–349

    Google Scholar 

  • Gray CM, Webb J (1995) Provenance of Palaeozoic turbidites in the Lachlan Orogenic Belt: strontium isotopic evidence. Aust J Earth Sci 42:95–105

    Google Scholar 

  • Gray DR, Gregory RT, Durney DW (1991) Rock-buffered fluid-rock interaction in deformed quartz-rich turbidite sequences, eastern Australia. J Geophys Res 96:19681–19704

    Google Scholar 

  • Gray DR (1997) Tectonics of the southeastern Australian Lachlan Fold Belt: structural and thermal aspects. In Burg J-P, Ford M (eds) Orogeny through time. Geological Society Special Publication 121, pp 149–177

    Google Scholar 

  • Gray DR, Foster DA (1998) Character and kinematics of faults within the turbidite-dominated Lachlan Orogen: implications for tectonic evolution of eastern Australia. J Struct Geol 20:1691–1720

    Google Scholar 

  • Gray DR, Foster DA (2004a) Regional Geology: Tasman Orogen, Australia. Encyclopedia Geology 1:237–252

    Google Scholar 

  • Gray DR, Foster DA (2004b) Tectonic evolution of the Lachlan Orogen, southeast Australia: historical review, data synthesis and modern perspectives. Aust J Earth Sci 51:773–817

    Google Scholar 

  • Gray DR, Foster DA (2004c) 40Ar/39Ar thermochronologic constraints on deformation, metamorphism and cooling/exhumation of a Mesozoic accretionary wedge, Otago Schist, New Zealand. Tectonophysics 385:181–210

    Google Scholar 

  • Gray DR, Foster DA, Bucher M (1997) Recognition and definition of orogenic events in the Lachlan Fold Belt. A J Earth Sci 44:489–581

    Google Scholar 

  • Gray DR, Willman CE (1991) Thrust-related strain gradients and thrusting mechanisms in a chevron-folded sequence, southeastern Australia. J Struct Geol 13:691–710

    Google Scholar 

  • Gray DR, Foster DA, Goscombe B et al (2006a) 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia with implications for tectonothermal and geodynamic evolution. Precam Res 150:49–72. doi:10.1016/j.precmres.2006.07.003

    Google Scholar 

  • Gray DR, Foster DA, Korsch RJ, Spaggiari CV (2006b) Structural style and crustal architecture of the Tasmanides of eastern Australia, example of a composite accretionary orogeny. In Mazzoli S, Butler B (eds) Styles of continental compression. Geological Society of America, (Special Publication 414), pp 119–232

    Google Scholar 

  • Gray DR, Foster DA, Maas R et al (2007) Continental growth and recycling by accretion of deformed turbidte fans and remnant ocean basins: examples from Neoproterozoic and Phanerozoic orogens. In Hatcher RD et al (eds) The 4D Framework of Continental Crust. Geological Society America Memoirs, 200, pp 63–92 doi:10.1130/2007.1200(05)

    Google Scholar 

  • Gray DR, Foster DA, Meert JG et al (2008) A Damara Orogen perspective on the assembly of southwestern Gondwana. In Pankhurst RJ et al (eds) West Gondwana: Pre-Cenozoic Correlations Across South Atlantic Region, Geological Society Special Publication 294, pp 257–278, doi:10.1144/SP294.14

    Google Scholar 

  • Haack U, Hoefs J, Gohn E (1982) Constraints on the origin of Damaran granites by Rb/Sr and δ18O data. Contrib Min Pet 79:279–289

    Google Scholar 

  • Haack U, Gohn E, Hartmann O (1983) Radiogenic heat generation in Damaran rocks. Geol Surv S Afr SP 11:225–232

    Google Scholar 

  • Hälbich IW (1977) Structure and tectonics along the southern margin of the Damara mobile belt, South West Africa An Univ Stellenbosch Ser A1 Geology, 2, 149–247

    Google Scholar 

  • Hawkesworth CJ, Kramers JD, Miller RMG (1981) Old model Nd ages in Namibian Pan-African rocks. Nature 289:278–282

    Google Scholar 

  • Hawkesworth CJ, Gledhill AR, Roddick JC, et al (1983) Rb-Sr and 40Ar/39Ar studies bearing on models for the thermal evolution of the Damara Belt, Namibia. In Miller RMcG (ed) Evolution of the Damara Orogen of southwest Africa/Namibia. Geological Society South Africa Special Publication 11, 323–338

    Google Scholar 

  • Henry DJ, Mueller PA, Wooden JL et al (1982) Granulite grade supracrustal assemblages of the Quad Creek area, eastern Beartooth Mountains, Montana. In Mueller PA, Wooden, J L (eds) Precambrian Geology of the Beartooth Mountains, Montana and Wyoming, Montana Bureau of Mines and Geology Special Publication 84, 147–159

    Google Scholar 

  • Hine R, Williams IS, Chappell BW, White AJR (1978) Contrasts between I-and S- type granitoids of the Kosciusko Batholith. J Geol Soc Aust 25:219–234

    Google Scholar 

  • Hoffmann K-H (1983) Lithostratigraphy and facies of the Swakop Group of the southern Damara belt, SWA/Namibia. In Miller RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia. Geological Society South Africa Special Publication, 11, 43–63

    Google Scholar 

  • Hoffman PF, Hawkins DP, Isachsen CE, Bowring SA (1996) Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt, Namibia. Com Geol Sur Namibia 11:47–52

    Google Scholar 

  • Hudson T, Plafker G (1982) Palaeogene metamorphism of an accretionary flysch terrane, eastern Gulf of Alaska. Geol Soc Am B 93:1280–1290

    Google Scholar 

  • Ingersoll RV, Dickinson WR, Graham SA (2003) Remnant-ocean submarine fans: Largest sedimentary systems on earth. In Chan MA, Archer AW (eds) Extreme depositional environments: Mega end members in geologic time. Geological Society of American Special Publication 370, 191–208

    Google Scholar 

  • Ireland TR, Gibson GM (1998) SHRIMP monazite and zircon geochronology of high-grade metamorphism in New Zealand. J Met Geol 16:149–167

    Google Scholar 

  • Iizuka T, Komiya T, Rino S, et al (2012) Detrital zircon evidence for Hf-isotopic evolution of granitoid crust and continental growth. Geochem Cosmochim Acta 74:2450–2472

    Google Scholar 

  • Jacob RE, Moore JM, Armstrong RA (2000) Zircon and titanite age determinations from igneous rocks in the Karibib District, Namibia; implications for Navachab vein-style gold mineralization. Com Geol Surv Namibia 12:157–166

    Google Scholar 

  • Jacob RE, Snowdon PA, Bunting FJL (1983) Geology and structural development of the Tumas basement dome and its cover rocks. In Miller RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia, Geological Society South Africa Special Publication 11, 157–172

    Google Scholar 

  • John T, Schenk V (2003) Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia); prograde metamorphism triggered by fluid infiltration. Contrib Min Pet 146:174–191

    Google Scholar 

  • John T, Schenk V, Haase K, et al (2003) Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology 31:243–246

    Google Scholar 

  • Johnson BD, Veevers JJ (1984) Oceanic palaeomagnetism. In: Veevers JJ (ed) Phanerozoic Earth History of Australia, Oxford Monographs on Geology and Geophysics 2, 17–38

    Google Scholar 

  • Johnson SP, De Waele B, Tembo F, et al (2004) Subduction of continental crust during Gondwana amalgamation: very-high-pressure metamorphism and metasomatism in the Zambezi Belt. Front Res Earth Evol, 2

    Google Scholar 

  • Jung S (2000) High-temperature, mid-pressure clockwise P-T paths and melting in the development of regional migmatites: the role of crustal thickening and repeated plutonism. Geol J 35:345–359

    Google Scholar 

  • Jung S, Hoernes S, Mezger K (2000) Geochronology and petrogenesis of Pan-African syn-tectonic S-type and post-tectonic A-type granite (Namibia) – products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos 50:259–287

    Google Scholar 

  • Jung S, Hoernes S, Mezger K (2002) Synorogenic melting of mafic lower crust; constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara Orogen, Namibia). Contrib Min Pet 143:551–566

    Google Scholar 

  • Jung S, Mezger K (2003a) U-Pb garnet chronometry in high-grade rocks; case studies from the central Damara Orogen (Namibia) and implications for the interpretation of Sm-Nd garnet ages and the role of high U-Th inclusions. Contrib Min Pet 146:382–396

    Google Scholar 

  • Jung S, Mezger K (2003b) Petrology of basement-dominated terranes; I, Regional metamorphic T-t path from U-Pb monazite and Sm-Nd garnet geochronology (central Damara Orogen, Namibia). Chem Geol 198:223–247

    Google Scholar 

  • Jung S, Mezger K, Hoernes S (1998a) Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites – a major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Damara Belt, Namibia. Lithos 45:147–175

    Google Scholar 

  • Jung S, Mezger K, Hoernes (1998b) Geochemical and isotopic studies of syenites from the Proterozoic Damara Belt (Namibia): implications for the origin of syenites. Min Mag 62:729–730

    Google Scholar 

  • Jung S, Mezger K, Hoernes S (2001) Trace element and isotopic (Sr, Nd, Pb, O) arguments for a mid-crustal origin of Pan-African garnet-bearing S-type granites from the Damara orogen (Namibia). Precam Res 110:325–355

    Google Scholar 

  • Jung S, Mezger K, Hoernes S (2003) Petrology of basement-dominated terranes II. Contrasting isotopic (Sr, Nd, Pb, O) signatures of basement-derived granites and constraints on the source region of granite (Damara orogen, Namibia). Chem Geol 199:1–28

    Google Scholar 

  • Jung S, Masberg P, Mihm D, Hoernes S (2009) Partial melting of diverse crustal sources—constraints from Sr-Nd-O isotopic compositions of quartz diorite-granodiorite-leucogranite associations (Kaoko Belt, Namibia). Lithos 111:236–251

    Google Scholar 

  • Karlstrom KE, Bowring SA (1988) Early Proterozoic orogeny assembly of tectonostratigraphic terranes in southwestern North America. J Geol 96:561–576

    Google Scholar 

  • Karlstrom KE, Ahall KI, Harlan SS, et al (2001) Long-lived (1.8–1.0 Ga) convergent orogen in southeastern Laurentia; its extensions to Australia and Baltica and implications for refining Rodinia. Precam Res 111:5–30

    Google Scholar 

  • Kasch KW (1983a) Continental collision, suture progradation and thermal relaxation: a plate tectonic model for the Damara Orogen in central Namibia. In Miller, RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia, Geological Society of South Africa Special Publication 11, 423–429

    Google Scholar 

  • Kasch KW (1983b) Regional P-T variations in the Damara Orogen with particular reference to early high-pressure metamorphism along the southern margin. In Miller RG (ed) Evolution of the Damara Orogen of South West Africa/Namibia, Geological Society of South Africa Special Publication 11, pp. 243–253

    Google Scholar 

  • Keay S, Collins WJ, McCulloch MT (1997) A three-component isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25:307–310

    Google Scholar 

  • Keay S, Steele D, Compston W (2000) Identifying granite sources by SHRIMP U-Pb zircon geochronology: an application to the Lachlan Fold Belt. Contrib Min Pet 137:323–341

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL et al (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O Isotopes in zircon. Science 315:980–983

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ et al (2009) Isotopic evidence for rapid growth in an extensional accretionary orogeny: the Tasmanides, eastern Australia. Earth Plan Sci Let 284:455–466

    Google Scholar 

  • Killick AM (2000) The Matchless Belt and associated sulphide mineral deposits, Damara Orogen, Namibia. In Miller RMcG (ed) Henno Martin Commemorative Volume, Communication of Geological Survey of Namibia 12, pp 73–80

    Google Scholar 

  • Kimbrough DL, Mattison JM, Coombs DS et al (1992) Uranium-lead ages for the Dun Mountain Ophiolite belt and Brook Street terrane, South Island, New Zealand. Geol Soc Am B 104:429–443

    Google Scholar 

  • Kimbrough DL, Tulloch AJ, Geary E, Coombs DS, Mattinson JM (1993) Isotopic ages from the Nelson region of the South Island, New Zealand: crustal structure and definition of the Median Tectonic Zone. Tectonophysics 225:433–448

    Google Scholar 

  • Kimbrough DL, Tulloch AJ, Coombs DS et al (1994) Uranium-lead ages from the Median Tectonic Zone, South Island New Zealand. New Zea J Geol Geophys 37:393–419

    Google Scholar 

  • Kimura G, Ludden J (1995) Peeling of oceanic crust in subduction zones. Geology 23:217–220

    Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J Pet 38:371–391

    Google Scholar 

  • Kisters AFM, Jordaan LS, Neumaier K, (2004) Thrust-related dome structures in the Karibib district and the origin of orthogonal fabric domains in the south Central Zone of the Pan-African Damara belt, Namibia. Precam Rese 133:283–303

    Google Scholar 

  • Klepeis KA, Clarke GL, Rushmer T (2003) Magma transport and coupling between deformation and magmatism in the continental lithosphere. GSA Today 13:4–11

    Google Scholar 

  • Korn H, Martin H (1959) Gravity tectonics in the Naukluft Mountains of South West Africa. Geol Soc Am B 70:1047–1078

    Google Scholar 

  • Kröner A (1982) Rb-Sr geochronology and tectonic evolution of the Pan African belt of Namibia, southwestern Africa. Am J Sc 282:1471–1507

    Google Scholar 

  • Kröner A (1984) Dome structures and basement reactivation in the Pan-African Damara belt of Namibia, In Kröner A, Greiling RO (eds) Precambrian tectonics illustrated. Nagele und Obermiller, Stuttgart, pp 191–206

    Google Scholar 

  • Kukla C (1993) Strontium isotope heterogeneities in amphibolite facies, banded metasediments—a case study from the Late Proterozoic Kuiseb Formation of the southern Damara Orogen, Central Namibia. Geol Sur Namibia Mem 15:p 39

    Google Scholar 

  • Kukla PA, Stanistreet IG (1991) Record of the Damaran Khomas Hochland accretionary prism in central Namibia: Refutation of an “ensialic” origin of a Late Proterozoic orogenic belt. Geology 19:473–476

    Google Scholar 

  • Kukla PA, Opitz C, Stanistreet IG, Charlesworth EG (1988) New aspects of the sedimentology and structure of the Kuiseb Formation in the western Khomas Trough, Damara Orogen, South West Africa/Namibia. Com Geol Surv Namibia 4:33–42

    Google Scholar 

  • Longridge L, Gibson RL, Kinnaird JA, Armstrong RA (2011) Constraining the timing of deformation in the southwestern Central Zone of the Damara Belt, Namibia. In Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, et al (eds) The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History. Geological Society of London Special Publication 357, pp 107–135.

    Google Scholar 

  • Lundberg N, Reed DL (1991) Continetal margin tectonics: forearc process. Rev Geophys 29:794–806

    Google Scholar 

  • Maas R, Nicholls IA (2002) Nd-Sr isotopic evidence for the origin of Devonian granitic and felsic volcanic rocks of the western Lachlan Fold Belt. Geol Soc Austr Ab 67:36

    Google Scholar 

  • Maas R, Nicholls IA, Greig A, Nemchin A (2001) U-Pb zircon studies of mid- crustal metasedimentary enclaves from the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia. J Pet 42:1429–1448

    Google Scholar 

  • Martin H, Porada H (1977) The intracratonic branch of the Damara orogen in South West Africa. I. Discussion of geodynamic models. Precam Res 5:311–338

    Google Scholar 

  • Masberg P (2000) Garnet-growth in medium-pressure granulite facies metapelites from the central Damara Orogen: igneous versus metamorphic history. In Miller RMcG (ed) Henno Martin Commemorative Volume. Communications of Geolological Survey of Namibia12, pp 115–124

    Google Scholar 

  • McCulloch MT, Bradshaw JY, Taylor SR (1987) Sm-Nd and Rb-Sr isotopic and geochemical systematics in Phanerozoic granulites from Fiordland, southwest New Zealand. Contrib Min Pet 97:183–195

    Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S- and I- type granites. Earth Planet Sci Let 58:51–64

    Google Scholar 

  • McDermott F, Harri NBW, Hawkesworth CJ (2000) Geochemical constraints on the petrogenesis of Pan-African A-type granites in the Damara Belt, Namibia. In Miller RMcG (ed) Henno Martin Commemorative Volume, Communications of Geolological Survey of Namibia12, pp 139–148

    Google Scholar 

  • McDermott F, Harris NBW, Hawkesworth CJ (1996) Geochemical constraints on crustal anatexis: a case study from the Pan-African granitoids of Namibia. Contrib Min Pet 123:406–423

    Google Scholar 

  • McDermott F, Hawkesworth CJ (1990) Intracrustal recycling and upper-mantle evolution: a case study from the Pan-African Damara mobile belt, central Namibia. Chem Geol 83:263–280

    Google Scholar 

  • Maloof AC (2000) Superposed folding at the junction of the inland and coastal belts, Damara Orogen, Namibia. In Miller RMcG (ed) Henno Martin Commemorative Volume, Communications of Geolological Survey of Namibia12, pp 89–98

    Google Scholar 

  • Martin H (1983) Overview of the geosynclinal, structural and metamorphic development of the intracontinental branch of the Damara Orogen. In: Martin H, Eder FW (eds) Intracontinental Fold Belts. Springer, Berlin, p 473–502

    Google Scholar 

  • Martin H, Porada H (1977) The intracratonic branch of the Damara Orogen in South West Africa: I. Discussion of Geodynamic models. Precam Res 5:311–338

    Google Scholar 

  • Miller JMcL, Gray DR (1997) Subduction related deformation and the Narooma anticlinorium, eastern Lachlan Orogen. Austr J Earth Sci 44:237–251

    Google Scholar 

  • Miller RMcL (1983a) ThePan-African Damara orogen of South West Namibia/Africa. In Miller RMcL (ed) Evolution of the Damara Orogen of southwest Africa/Namibia, Geological Society of South Africa Special Publication 11, 431–515

    Google Scholar 

  • Miller RMcL (ed) (1983b) Evolution of the Damara Orogen of southwest Africa/Namibia, Geological Society of South Africa Special Publication, p 515

    Google Scholar 

  • Miller RMcG, Barnes SJ, Balkwill G (1983a) Possible active margin deposits within the southern Damara Orogen: The Kuiseb Formation between Okhahandja and Windhoek. In Miller RMcL (ed) Evolution of the Damara Orogen of southwest Africa/Namibia, Geological Society of South Africa Special Publication, 11, 73–88

    Google Scholar 

  • Miller RMcG, Freyer EE, Hälbich IW (1983b) Turbidite succession equivalent to the entire Swakop Group. In Miller RMcG (ed) Evolution of the Damara Orogen of southwest Africa/Namibia, Geological Society of South Africa Special Publication, 11, 65–71

    Google Scholar 

  • Mogk D, Henr D, Mueller P, Foster D (2012) Origins of a continent evidence from a research for undergraduates program in Yellowstone. Yellowstone Sci 20:22–32

    Google Scholar 

  • Moore DH, Betts PG, Hall H (2013) Towards understanding the early Gondwana margin in southeastern Australia. Gondwana Res 23:1581–1598

    Google Scholar 

  • Morand VJ (1990) Low-pressure regional metamorphism in the Omeo Metamorphic Complex, Victoria, Australia. J Met Geol 8:1–12

    Google Scholar 

  • Morand V, Gray DR (1991) Major fault zones related to the Omeo metamorphic complex, northeastern Victoria. Austr J Earth Sci 38:203–221

    Google Scholar 

  • Mortimer N (1993) Jurassic tectonic history of the Otago Schist, New Zealand. Tectonics 12:237–244

    Google Scholar 

  • Mortimer N (2000) Metamorphic discontinuities in orogenic belts: example of garnet—biotite—albite zone in the Otago Schist, New Zealand. Int J Earth Sci 89:295–306

    Google Scholar 

  • Mortimer N (2004) New Zealand’s geological foundations. Gondwana Res 7:261–272

    Google Scholar 

  • Mortimer N, Tulloch AJ, Spark RN et al (1999a) Overview of the Median Batholith, New Zealand: a new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. J Afr Earth Sci 29:259–270

    Google Scholar 

  • Mortimer N, Gans P, Calvert A, Walker N (1999b) Geology and thermochronometry of the east edge of the Median Batholith (Median Tectonic Zone): a new perspective on Permian to Cretaceous crustal growth of New Zealand. Island Arc 8:404–425

    Google Scholar 

  • Mortimer N, Davey FJ, Melhush A et al (2003) Geological interpretation of a deep crustal seismic reflection profile across the eastern Province and Median Batholith, New Zealand: crustal architecture of an extended Phanerozoic convergent orogeny. New Zea J Geol Geophys 45:349–363

    Google Scholar 

  • Mueller P, Frost C (2006) The Wyoming Province: A distinctive Archean craton in Laurentian North America. Can J Earth Sci 43:1391–97

    Google Scholar 

  • Mueller PA, Wooden JL (2012) Trace Element and Lu-Hf Systematics in Hadean-Archean Detrital Zircons: Implications for Crustal Evolution. J Geology 120:15–29

    Google Scholar 

  • Mueller PA, Wooden JL, Mogk DW, Henry DJ, Bowes DR (2010) Rapid growth of an Archean continent by arc magmatism. Precambr Res 183:70–88

    Google Scholar 

  • Mueller PA, Mogk DW, Henry DJ et al (2013) The plume to plate transition: Hadean and Archean evolution of the northern Wyoming Province, U.S.A. In: Dilek Y, Furnes H (eds) Archean Earth and Early Life. Springer, New York, this volume

    Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD, Bradshaw JD (1996a) Ion microprobe dating of Paleozoic granitoids: Devonian magmatism in New Zealand and correlations with Australia and Antarctica. Chem Geol 127:191–210

    Google Scholar 

  • Muir RJ, Weaver SD, Bradshaw JD et al (1995) The Cretaceous Separation Point Batholith, New Zealand. Granitoid magmas formed by melting of mafic lithosphere. J Geol Soc Lond 152:689–701

    Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD et al (1998) Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand. J GeolSoc Lond 155:1037–1053

    Google Scholar 

  • Muir R, Weaver SD, Bradshaw JD et al (1996b) Geochemistry of the Karamea Batholith, New Zealand, and comparisons with the Lachlan Fold Belt granites of southeastern Australia. Lithos 39:1–20

    Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD et al (1988) Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand. J Geol Soc London 155:1037–1053

    Google Scholar 

  • Murray CG, Fergusson CL, Flood PG et al (1987) Plate tectonic model for the Carboniferous evolution of the New England Fold belt. Austr J Earth Sci 34:213–236

    Google Scholar 

  • Newstead BL (2010). The Congo-Kalahari cratonic relationship: from Rodinia to Gondwana. M.S. Thesis, University of Florida, Gainesville, p 234

    Google Scholar 

  • Norris RJ, Craw D (1987) Aspiring terrane: an oceanic assemblage from New Zealand and its implications for Mesozoic terrane accretion in the southwest Pacific. In Leitch EC, Scheibner E, (eds) Terrane Accretion and Orogenic Belts, American Geophysics Union Geodynamics Series 19, pp 169–177

    Google Scholar 

  • Offler R, McKnight S, Morand V (1998) Tectonothermal history of the western Lachlan Fold Belt, Australia: insights from white mica studies. J Met Geol 16:531–540

    Google Scholar 

  • O’Halloran GL, Rey P (1999) Isostatic constraints on the central Victorian lower crust: implications for the tectonic evolution of the Lachlan fold belt. Austr J Earth Sci 46:633–639

    Google Scholar 

  • Passchier CW, Trouw RA, Ribeiro A, Pacuillo FVP (2002) Tectonic evolution of the southern Kaoko Belt, Namibia. J Afr Earth Sci 35:61–75

    Google Scholar 

  • Patchett PJ, Bridgwater D (1984) Origin of continental crust of 1.9–1.7 Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. Contrib Min Pet 87:311–318

    Google Scholar 

  • Percival JA, Bleeker W, Cook EA et al (2004) PanLITHOPROBE Workshop IV: Intra-orogen correlations and comparative Orogenic anatomy. Geosci Can 31:23–39

    Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust; the Cordillera Blanca Batholith, Peru. J Pet 37:1491–1521

    Google Scholar 

  • Phillips GN, Wall VJ, Clemens JC (1981) Petrology of the Strathbogie Batholith—a cordierite-bearing granite. Can Min 19:47–63

    Google Scholar 

  • Porada H (1979) The Damara-Ribeira orogen of the Pan-African Brasiliano Cycle in Namibia (southwest Africa) and Brazil as interpreted in terms of continental collision. Tectonophysics 57:237–265

    Google Scholar 

  • Porada H (1983) Geosynclinal model for the geosynclinal development of the Damara Orogen, Namibia, southwest Africa. In: Martin H, Eder FW (eds.) Intracontinental fold belts. Springer, Berlin, pp 503–541

    Google Scholar 

  • Porada H, Ahrendt H, Behr J, Weber K (1983) The join of the coastal and intracontinental branches of the Damara Orogen, Namibia, South West Africa. In: Martin H, Eder FW (eds.) Intracontinental Fold Belts. Springer, Berlin, pp 901–912

    Google Scholar 

  • Powell CMcA (1983) Tectonic relationship between the late Ordovician and Late Silurian palaeogeographies of southeastern Australia. J Geol Soc Aust 30:353–373

    Google Scholar 

  • Powell CMcA (1984) Ordovician to Carboniferous. In: Veevers JJ (ed) Phanerozoic Earth History of Australia, Oxford Mon Geol Geophys 2. Clarendon, Oxford, pp 290–340

    Google Scholar 

  • Prave AR (1996) Tale of three cratons: tectostratigraphic anatomy of the Damara Orogen in northwestern Namibia and the assembly of Gondwana. Geology 24:1115–1118

    Google Scholar 

  • Price RC, Brown WM, Woolard CA (1983) The geology, geochemistry and origin of late-Silurian, high-Si igneous rocks of the upper Murray Valley, NE Victoria. J Geol Soc Austr 30:443–459

    Google Scholar 

  • Price RC, Ireland TR, Maas R, Arculus RJ (2006) SHRIMP zircon geochronology and Sr-Nd isotope constraints on the interface between Brook Street Terrane and the Median Batholith, Bluff Pensinsula and southern Longwoods Range, Southland, New Zealand. New Zea J Geol Geophys 49:291–303

    Google Scholar 

  • Puhan D (1983) Temperature and pressure of metamorphism in the Central Damara Orogen, in Miller, R.G. ed, Evolution of the Damara Orogen of South West Africa/Namibia. Geological Society of South Africa Special Publication 11, pp 219–223

    Google Scholar 

  • Richards SW, Collins WJ (2002) The Cooma metamorphic complex, a low-P, high-T (LPHT) regional aureole beneath the Murrumbidgee batholith. J Met Geol 20:119–134

    Google Scholar 

  • Roser B, Cooper AF (1990) Geochemistry and terrane affiliation of Haast Schist from the western Southern Alps, New Zealand. New Zea J Geol Geophys 94:635–650

    Google Scholar 

  • Rossetti F, Vignaroli G, Di VG (2011) Long-lived orogenic construction along the paleo-Pacfic margin of Gondwana (Deep Freeze Range, North Victoria Land, Antarctica). Tectonics 30, doe:10.1029/2010TC002804

    Google Scholar 

  • Rossiter AG (2003) Granitic rocks of the Lachlan Gold Belt in Victoria. In Birch WD (ed) Geol Victoria, Geological Society of Australia Special Publication 23, pp 217–237

    Google Scholar 

  • Schmidt A, Wedepohl KH (1983) Chemical composition and genetic relations of the Matchless Amphibolite (Damara Orogenic Belt). In Miller RMcG (ed) Evolution of the Damara Orogen of southwest Africa/Namibia, Geological Society of South Africa Special Publication 11, pp 139–145

    Google Scholar 

  • Schmitt RS, Trouw RAJ, Passchier CW et al (2012) 530 Ma syntectonic syenites and granites in NW Namibia—their relation with collision along the junction of the Damara and Kaoko belts. Gondwana Res 21:362–377

    Google Scholar 

  • Sengor CAM, Natal’in BA (1996) Turkic-type orogeny and its role in the making of the continental crust. An Rev Earth Plan Sci 24:263–337

    Google Scholar 

  • Smith AG (1981) Subduction and coeval thrust belts, with particular reference to North America. In McClay KR, Price NJ (eds) Thrust and nappe tectonics, Geological Society Special Publication 9, pp 111–124

    Google Scholar 

  • Soesoo A, Bons PD, Gray DR, Foster DA (1997) Divergent double sunduction: tectonic and petrologic consequences. Geology 25:755–758

    Google Scholar 

  • Soesoo A, Nicholls IA (1999) Mafic rocks spatially associated with Devonian felsic intrusions of the southern Lachlan Fold Belt: a possible mantle contribution to crustal evolution processes. Austr J Earth Sci 46:725–734

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA (2002a) Blueschist metamorphism during accretion in the Lachlan Orogen, southeastern Australia. J Met Geology 20:711–726

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA (2003a) Tethyan and Cordilleran-Type Ophiolites of Eastern Australia: implications for the evolution of the Tasmanides. In Dilek Y, Robinson PT (eds) Ophiolites in Earth’s History, Geological Society of London Special Publication 218, pp 517–539

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA (2004a) Ophiolite accretion in the Lachlan Orogen, southeastern Australia. J Struct Geol 6:87–112

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA (2004b) Lachlan Orogen subduction-accretion systematics revisited. Austr J Earth Sci 51:549–553

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA, Fanning CM (2002b) Occurrence and significance of blueschists in the southern Lachlan Orogen. Aust J Earth Sci 49:255–269

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA, McKnight S (2003b) Evolution of the boundary between the western and central Lachlan Orogen: implications for Tasmanide tectonics. Austr J Earth Sci 50:725–749

    Google Scholar 

  • Spell TL, McDougall I, Tulloch AJ (2000) Thermochronologic constraints on the breakup of the Pacific Gondwana margin: The Paparoa metamorphic core complex, South Island, New Zealand. Tectonics 19:433–451

    Google Scholar 

  • Sporli KB (1978) Mesozoic tectonics, North Island, New Zealand. Geol Soc Am Bull 89:415–425

    Google Scholar 

  • Swart R (1992) The sedimentology of the Zerrissene turbidite system, Damara Orogen, Namibia. Geological Survey of Namibia Memoirs 13, p 54

    Google Scholar 

  • Tamaki K (1995) Opening of the Japan Sea. In: Taylor B (ed) Backarc Basins—Tectonic and Magmatism. Plenum, New York, pp 407–420

    Google Scholar 

  • Thompson AB (1996) Fertility of crustal rocks during anatexis. T Royal Soc Ed 87:1–10

    Google Scholar 

  • Tulloch AJ, Kimbrough DL (1989) The Paparoa Metamorphic Core Complex, New Zealand: Cretaceous extension associated with fragmentation of the Pacific margin of Gondwana. Tectonics 8:1217–1234

    Google Scholar 

  • Tulloch AJ (1983) Granitoid rocks of New Zealand—a brief review. Geol Soc Am Mem 159:5–20

    Google Scholar 

  • Tulloch AJ (1988) Batholiths, plutons and suites: nomenclature for granitoid rocks of Westland-Nelson, New Zealand. New Zea J Geol Geophys 31:505–509

    Google Scholar 

  • Tulloch AJ, Kimbrough DL (2003) Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: Peninsular Ranges batholith of Baja California and Median batholith of New Zealand. Geol Soc Am SP 374:1–21

    Google Scholar 

  • Turner SP, Kelley SP, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Google Scholar 

  • Turner SP, Foden J, Kelley SP et al (1996) Source of the Lachlan fold belt flysch linked to convective removal of the lithospheric mantle and rapid exhumation of the Delamerian-Ross fold belt. Geology 24:941–944

    Google Scholar 

  • van de Flierdt T, Hoernes S, Jung S et al (2003) Lower crustal melting and the role of open-system processes in the generation of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos 67:205–226

    Google Scholar 

  • Vandenberg AHM, Stewart IR (1992) Ordovician terranes of the southeastern Lachlan Fold Belt: stratigraphy, structure and palaeogeographic reconstruction. Tectonophysics 214:159–176

    Google Scholar 

  • Veevers JJ (2000a) Billion-year earth history of Australia and neighbours in Gondwanaland. Gemoc, Sydney, p 388

    Google Scholar 

  • Veevers JJ (2000b) Antarctic Beardmore-Ross and Mirny provenances saturate Palaeozoic-Mesozoic East Gondwanaland with 0.6–0.5 Ga zircons. In Veevers JJ (ed) Billion-year earth history of Australia and neighbors in Gondwanaland. Gemoc, Sydney, pp 110–130

    Google Scholar 

  • Voice PJ, Kowalewski M, Eriksson KA (2011) Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J Geol 119:09–126

    Google Scholar 

  • Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • Waight TE, Weaver SD, Muir RJ (1998a) Mid-Cretaceous granitic magmatism dating the transition from subduction to extension in southern New Zealand: a chemical and tectonic synthesis. Lithos 45:469–482

    Google Scholar 

  • Waight TE, Weaver SD, Muir J et al (1998b) The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contrib Min Pet 130:225–239

    Google Scholar 

  • Wandres AM, Bradshaw JD (2005) New Zealand tectonostratigraphy and implications from conglomeratic rocks for the configuration of the SW Pacific margin of Gondwana. In Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane Processes at the Margins of Gondwana, Geological Society of London Special Publication, 246, pp 179–216

    Google Scholar 

  • Watson JM, Gray DR (2001) Character, extent and significance of broken formation for the Tabberabbera Zone, central Lachlan Orogen. Austr J Earth Sci 48:943–954

    Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan Fold Belt, SE Australia. Geol Soc Am Mem 159:21–34

    Google Scholar 

  • White AJR, Chappell BW (1988) Some supracrustal (S-type) granites of the Lachlan Fold Belt. T Roy Soc Ed 79:169–182

    Google Scholar 

  • Williams IS (1992) Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. T Roy Soc Ed 83:447–458

    Google Scholar 

  • Williams IS, Chappel BW, McCulloch MT, Crook KA (1991) Inherited and detrital zircons—clues to the early growth of crust in the Lachlan Fold Belt. Geol Soc Austr Ab 29:58

    Google Scholar 

  • Williams IS, Chappel BW, Crook KAW, Nicoll RS (1994) In search of the provenance of the early Palaeozoic flysch in the Lachlan Fold Belt, southeastern Australia. Geol Soc Austr Ab 37:464

    Google Scholar 

  • Wooden JL, Mueller PA (1988) Pb, Sr, Nd isotopic compositions of a suite of Late Archean igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution. Earth Planet Sci Let 87:59–72

    Google Scholar 

  • Wyborn D, Chappell BW (1986) The petrogenetic significance of chemically related plutonic and volcanic rock units. Geol Mag 123:619–628

    Google Scholar 

  • Wyborn D, Chappell BW, Johnston RM (1981) Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia. J Geophys Res 86:10335–10348

    Google Scholar 

  • Wyborn LAI, Wyborn D, Warren R, Drummond BJ (1992) Proterozoic granite types in Australia: implications for lower crust composition, structure and evolution. T Roy Soc Ed 83:201–209

    Google Scholar 

  • Yardley BWD (1982) The early metamorphic history of the Haast Schists and related rocks of New Zealand. Contrib Min Pet 81:317–327

    Google Scholar 

  • Zen E-An (1995) Crustal magma generation and low-pressure high-temperature regional metamorphism in an extensional environment: possible application to the Lachlan Fold Belt, Australia. Ame J Sci 295:851–874

    Google Scholar 

Download references

Acknowledgements

The research was supported by a variety of Australian Research Council and National Science Foundation Grants (EAR0073638, EAR-0440188, EAR0738874, and EAR0851752). Discussions with Chris Fergusson, Vince Morand, Clive Willman, John Miller, Chris Wilson, Bob Gregory, Roland Maas, Nick Mortimer, Cees Passchier, Rudolph Trouw, Thomas Becker, Charlie Hoffmann, David Mogk, and Darrell Henry have helped shape our understanding of these areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Foster, D., Mueller, P., Goscombe, B., Gray, D. (2014). Accreted Turbidite Fans and Remnant Ocean Basins in Phanerozoic Orogens: A Template for a Significant Precambrian Crustal Growth and Recycling Process. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_10

Download citation

Publish with us

Policies and ethics