Skip to main content

General Principles of Spin Transistors and Spin Logic Devices

  • Living reference work entry
  • First Online:
Handbook of Spintronics

Abstract

This chapter provides an overview of the field of spin-based devices, circuits, and architectures for digital information processing. Electron spin – as opposed to electron charge – is used as a classical degree of freedom to encode binary bits, and this approach improves the energy efficiency of information processing. However, there are also disadvantages associated with unreliability, difficulty of reading and writing information, and sometimes the need for cryogenic operation. These issues are discussed exhaustively, pointing the readers to niche applications where spin-based devices may offer some advantage. Both the basic and the applied aspects of spintronic information processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bandyopadhyay S, Das B, Miller AE (1994) Supercomputing with spin-polarized single electrons in a quantum coupled architecture. Nanotechnology 5:113

    ADS  Google Scholar 

  2. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Develop 5:183

    Google Scholar 

  3. Landauer R, Keyes RW (1970) Minimal energy dissipation in logic. IBM J Res Develop 14:152

    Google Scholar 

  4. Salahuddin S, Datta S (2007) Interacting systems for self-correcting low-power switching. Appl Phys Lett 90:093503

    ADS  Google Scholar 

  5. Cowburn RP, Koltsov DK, Adeyeye AO, Welland ME, Tricker DM (1999) Single domain circular nanomagnets. Phys Rev Lett 83:1042

    ADS  Google Scholar 

  6. Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:665

    ADS  Google Scholar 

  7. Bychkov Yu A, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039

    Google Scholar 

  8. Dresselhaus G (1955) Spin-orbit coupling effects in zinc-blende structures. Phys Rev 100:580

    MATH  ADS  Google Scholar 

  9. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443

    ADS  Google Scholar 

  10. Luo J-W, Zhang L, Zunger A (2011) Absence of intrinsic spin-splitting in one-dimensional quantum wires of tetrahedral semiconductors. Phys Rev B 84:121303(R)

    ADS  Google Scholar 

  11. Bandyopadhyay S, Cahay M (2004) Alternate spintronic analog of the electro-optic modulator. Appl Phys Lett 85:1814

    ADS  Google Scholar 

  12. Cahay M, Bandyopadhyay S (2004) Phase-coherent quantum mechanical spin transport in a weakly disordered quasi one-dimensional channel. Phys Rev B 69:045303

    ADS  Google Scholar 

  13. Elliott RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96:266

    Google Scholar 

  14. Yafet Y (1952) Calculation of the g-factor of metallic sodium. Phys Rev 85:478

    Google Scholar 

  15. D’yakonov MI, Perel’ VI (1971) Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov Phys JETP 33:1053

    Google Scholar 

  16. D’yakonov MI, Perel’ VI (1972) Spin relaxation of conduction electrons in non-centrosymmetric semiconductors. Sov Phys Solid State 23:3023

    Google Scholar 

  17. Bir GL, Aronov AG, Pikus GE (1975) Spin relaxation of electrons scattered by holes. Sov Phys JETP 42:705

    ADS  Google Scholar 

  18. Schliemann J, Egues JC, Loss D (2003) Nonballistic spin field effect transistor. Phys Rev Lett 90:146801

    ADS  Google Scholar 

  19. Cartoixá X, Tang DZY, Chang Y-C (2003) A resonant spin lifetime transistor. Appl Phys Lett 83:1462

    ADS  Google Scholar 

  20. Shafir E, Shen M, Saikin S (2004) Modulation of spin dynamics in a channel of a nonballistic spin field effect transistor. Phys Rev B 70:241302(R)

    ADS  Google Scholar 

  21. Tsymbal E, Mryasov ON, Leclair PR (2003) Spin-dependent tunneling in magnetic tunnel junctions. J Phys Condens Matter 15:R109

    ADS  Google Scholar 

  22. Koga T, Nitta J, Takayanagi H, Datta S (2002) Spin filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys Rev Lett 88:126601

    ADS  Google Scholar 

  23. Wan J, Cahay M, Bandyopadhyay S (2006) Can a non-ideal metal ferromagnet inject spin into a semiconductor with 100% efficiency without a tunnel barrier?. J Nanoelectron Optoelectron 1:60

    Google Scholar 

  24. Dowben PA, Skomski R (2004) Are half-metallic ferromagnets half metals?. J Appl Phys 95:7453

    ADS  Google Scholar 

  25. Salis G, Wang R, Jiang X, Shelby RM, Parkin SSP, Bank SR, Harris JS (2005) Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector. Appl Phys Lett 87:262503

    ADS  Google Scholar 

  26. Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molemkamp LW (1999) Injection and detection of a spin-polarized current in a light-emitting diode. Nature (London) 402:787

    ADS  Google Scholar 

  27. Hall KC, Flatté ME (2006) Performance of a spin-based insulated gate field effect transistor. Appl Phys Lett 88:162503

    ADS  Google Scholar 

  28. Suk SD et al (2005) IEEE Electron Device Meeting (IEDM) technical digest. doi:10.1109/IEDM.2005.1609453, p 717

    Google Scholar 

  29. Rodder M (1990) On-off current ratio in p-channel poly-Si MOSFETs – Dependence on hot carrier stress conditions. IEEE Electron Device Lett 11:346

    ADS  Google Scholar 

  30. Nitta J, Akazaki T, Takayanagi H, Enoki T (1997) Gate control of spin-orbit interaction in an inverted In(0.53)Ga(0.47)As/In(0.52)Al(0.48)As heterostructure. Phys Rev Lett 78:1335

    ADS  Google Scholar 

  31. Kwon JH, Koo HC, Cmang J, Han SH, Eom J (2008) Gate field effect on spin transport signals in a lateral spin valve device. J Korean Phys Soc Pt 1 53:2491

    Google Scholar 

  32. Trivedi A, Bandyopadhyay S, Cahay M (2007) Switching voltage, dynamic power dissipation and on-to-off conductance ratio of a spin field effect transistor. IET Circuit Device Syst 1:395

    Google Scholar 

  33. Pala MG, Governale M, Konig J, Zülicke U (2004) Universal Rashba spin precession of two dimensional electrons and holes. Europhys Lett 65:850

    ADS  Google Scholar 

  34. Agnihotri P, Bandyopadhyay S (2010) Analysis of the Datta-Das spin field effect transistor. Physica E 42:1736

    ADS  Google Scholar 

  35. Zainuddin ANM, Hong S, Siddiqui L, Datta S (2010) arXiv:cond-mat/1001:1523

    Google Scholar 

  36. Koo HC, Kwon JH, Eom J, Chang J, Han SH, Johnson M (2009) Control of spin precession in a spin-injected field effect transistor. Science 325:1515

    ADS  Google Scholar 

  37. Sun BY, Zhang P, Wu MW (2011) Voltage controlled spin precession in InAs quantum wells. Semicond Sci Technol 26:075005

    ADS  Google Scholar 

  38. Chao CY-P, Chuang SL (1992) Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum-wells. Phys Rev B 46:4110

    ADS  Google Scholar 

  39. Eckenberg U, Altarelli M (1985) Subbands and Landau levels in the two-dimensional hole gas at the GaAs-AlxGa1-xAs interface. Phys Rev B 32:3712

    ADS  Google Scholar 

  40. Bandyopadhyay S, Cahay M (2005) A spin field effect transistor for low leakage current. Physica E 25:399

    ADS  Google Scholar 

  41. Moore GE (1965) Cramming more components onto integrated circuits. Electronics Magazine 38(8):4

    Google Scholar 

  42. Bandyopadhyay S, Datta S, Melloch MR (1986) Aharonov-Bohm effect in semiconductor microstructures – Novel device possibilities. Superlat Microstruct 2:539

    ADS  Google Scholar 

  43. Appelbaum I, Monsma DJ (2007) Transit time spin field effect transistor. Appl Phys Lett 90:262501

    ADS  Google Scholar 

  44. Monsma DJ, Lodder JC, Popma TJA, Dieny B (1995) Perpendicular hot-electron spin-valve effect in a new magnetic-field sensor – The spin valve transistor. Phys Rev Lett 74:5260

    ADS  Google Scholar 

  45. Monsma DJ, Vlutters L, Lodder JC (1998) Room temperature-operating spin-valve transistors formed by vacuum bonding. Science 281:407

    ADS  Google Scholar 

  46. Huang B, Monsma DJ, Appelbaum I (2007) Experimental realization of a silicon spin field effect transistor. Appl Phys Lett 91:072501

    ADS  Google Scholar 

  47. Appelbaum I, Huang B, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature (Lond) 447:295

    ADS  Google Scholar 

  48. Fabian J, Žutić I, Das Sarma S (2004) Magnetic bipolar transistor. Appl Phys Lett 84:85

    ADS  Google Scholar 

  49. Flatte ME, Yu ZG, Johnston-Halperin E, Awschalom DD (2003) Theory of semiconductor magnetic bipolar transistors. Appl Phys Lett 82:4740

    ADS  Google Scholar 

  50. Flatté ME, Vignale G (2001) Unipolar spin diodes and transistors. Appl Phys Lett 78:1273

    ADS  Google Scholar 

  51. Bandyopadhyay S, Cahay M (2005) Are spin junction transistors suitable for signal processing?. Appl Phys Lett 86:133502

    ADS  Google Scholar 

  52. Johnson M (1993) Bipolar spin switch. Science 260:320

    ADS  Google Scholar 

  53. Johnson M (1994) The all-metal spin transistor. IEEE Spectrum 31:47

    Google Scholar 

  54. Mizushima K, Kinno T, Yamauchi T, Tanaka K (1997) Energy-dependent hot-electron transport across a spin-valve. IEEE Trans Magn 33:3500

    ADS  Google Scholar 

  55. LeMinh P, Gokcan H, Lodder JC, Jansen R (2005) Magnetic tunnel transistor with a silicon hot electron emitter. J Appl Phys 98:076111

    ADS  Google Scholar 

  56. Jansen R, Gokcan H, van’t Erve OMJ, Postma FM, Lodder JC (2004) Spin-valve transistors with high magnetocurrent and 40 μA output current. J Appl Phys 95:6927

    ADS  Google Scholar 

  57. Zeeman P (1897) The effect of magnetization on the nature of light emitted by a substance. Nature (Lond) 55:347

    ADS  Google Scholar 

  58. Zhirnov VV, Cavin RK, Hutchby JA, Bourianoff GI (2003) Limits to binary logic switch scaling – A Gedanken model. Proc IEEE 91:1934

    Google Scholar 

  59. Cavin RK, Zhirnov VV, Hutchby JA, Bourianoff GI (2005) Energy barriers, demons and minimum energy operation of electron devices. Fluct Noise Lett 5:C29

    Google Scholar 

  60. Nikonov DE, Bourianoff GI, Gargini P (2006) Power dissipation in spintronic devices out of thermodynamic equilibrium. J Supercond Novel Magn 19:497

    Google Scholar 

  61. Welser JJ, Bourianoff GI, Zhirnov VV, Cavin RK (2008) The quest for the next information processing technology. J Nanopart Res 10:1

    Google Scholar 

  62. Lent CS, Liu M, Lu Y (2006) Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology 17:4240

    ADS  Google Scholar 

  63. See also the comment on this paper by Zhirnov VV, Cavin RK (2007) Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology 18:298001

    Google Scholar 

  64. Molotkov SN, Nazin SS (1995) Single electron spin logical gates. JETP Lett 62:256

    Google Scholar 

  65. Agarwal H, Pramanik S, Bandyopadhyay S (2008) Single spin universal Boolean logic gate. New J Phys 10:015001

    MathSciNet  Google Scholar 

  66. Rugar D, Budakian R, Mamin HJ, Chui BH (2004) Single spin detection by magnetic resonance force microscopy. Nature (Lond 430:329

    ADS  Google Scholar 

  67. Xioa M, Martin I, Yablonovitch E, Jiang HW (2004) Electrical detection of the spin resonance of a single electron in a silicon field effect transistor. Nature (Lond) 430:435

    ADS  Google Scholar 

  68. Elzerman JM et al (2004) Single-shot readout of an individual electron spin in a quantum dot. Nature (Lond) 430:431

    ADS  Google Scholar 

  69. Bandyopadhyay S (2005) Computing with spins: From classical to quantum computing. Superlat Microstruct 37:77

    ADS  Google Scholar 

  70. Bandyopadhyay S, Roychowdhury VP (1996) Computational paradigms in nanoelectronics: Quantum coupled single electron logic and neuromorphic networks. Jpn J Appl Phys Pt 1 35:3350

    Google Scholar 

  71. Schroder DK (1987) Advanced MOS devices. In: Neudeck GW, Pierret RF (eds) Modular series on solid state devices. Addison-Wesley, Reading

    Google Scholar 

  72. Kish LB (2002) End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Phys Lett A 305:144

    ADS  Google Scholar 

  73. Melnikov DV, Leburton J-P (2006) Single-particle state mixing in two-electron double quantum dots. Phys Rev B 73:155301

    ADS  Google Scholar 

  74. Zhang XW, Fan WJ, Li SS, Xia JB (2007) Giant and zero electron g-factors of dilute nitride semiconductor nanowires. Appl Phys Lett 90:193111

    ADS  Google Scholar 

  75. de Sousa R, Das Sarma S (2003) Phys Rev B 67:033301; Hu X, de Sousa R, Das Sarma S (2003) In: Ono YA, Fujikawa K (eds) Foundations of quantum mechanics in the light of new technology. Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture. World Scientific, Singapore

    Google Scholar 

  76. Amasha S, MacLean K, Radu IP, Zumbühl DM, Kastner MA, Hanson MP, Gossard AC (2008) Electrical control of spin relaxation in a quantum dot. Phys Rev Lett 100:046803

    ADS  Google Scholar 

  77. Pramanik S, Stefanita C-G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M (2007) Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nat Nanoetch 2:216

    Google Scholar 

  78. Wang WL, Yazyev OV, Meng S, Kaxiras E (2009) Topological frustration in graphene nanoflakes: Magnetic order and spin logic devices. Phys Rev Lett 102:157201

    ADS  Google Scholar 

  79. Meurer B, Heitmann D, Ploog K (1992) Single-electron charging of quantum dot atoms. Phys Rev Lett 68:1371

    ADS  Google Scholar 

  80. Ciorga M, Sachrajda AS, Hawrylak P, Gould C, Zawadzki P, Jullian S, Feng Y, Wasilewski Z (2000) Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys Rev B 61, R16315

    ADS  Google Scholar 

  81. Piero-Ladriere M, Ciorga M, Lapointe J, Zawadzki P, Korukusisnki M, Hawrylak P, Sachrajda AS (2003) Spin-blockade spectroscopy of a two-level artificial molecule. Phys Rev Lett 91:026803

    ADS  Google Scholar 

  82. Livermore C, Crouch CH, Westerveldt RM, Campman KL, Gossard AC (1996) The Coulomb blockade in coupled quantum dots. Science 274:1332

    ADS  Google Scholar 

  83. Holleitner AW, Blick RH, Huttel AK, Eberl K, Kotthaus JP (2002) Probing and controlling the bonds of an artificial molecule. Science 297:70

    ADS  Google Scholar 

  84. Oosterkamp TH, Fujisawa T, van der Wiel WG, Ishibashi K, Hijman RV, Tarucha S, Kouwenhoven LP (1998) Microwave spectroscopy of a quantum dot molecule. Nature (Lond) 395:873

    ADS  Google Scholar 

  85. Craig NJ, Taylor JM, Lester EA, Marcus CM, Hanson MP, Gossard AC (2004) Tunable non-local spin control in a coupled quantum dot system. Science 304:565

    ADS  Google Scholar 

  86. Hanson R, Witkamp B, Vandersypen LMK, vanBeveren LHW, Elzerman JM, Kouwenhoven LP (2003) Zeeman energy and spin relaxation in a one-electron quantum dot. Phys Rev Lett 91:196802

    ADS  Google Scholar 

  87. Petta JR, Johnson AC, Taylor JM, Laird EA, Yacoby A, Lukin MD, Marcus CM, Hanson MP, Gossard AC (2005) Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309:2180

    ADS  Google Scholar 

  88. Nowack KC, Koppens FHL, Nazarov YV, Vandersypen LMK (2007) Coherent control of a single electron spin with electric fields. Science 318:5855

    Google Scholar 

  89. Berezovsky J, Mikkelsen MH, Stoltz NG, Coldren LA, Awschalom DD (2008) Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320:5874

    Google Scholar 

  90. Doris B et al. (2002) Technical digest of the IEEE electron device meeting, San Francisco

    Google Scholar 

  91. Chikazumi S (1964) Physics of magnetism. Wiley, New York

    Google Scholar 

  92. Gaunt P (1977) Frequency constant for thermal activation of a ferromagnetic domain wall. J Appl Phys 48:3470

    ADS  Google Scholar 

  93. Cowburn RP, Welland ME (2000) Room-temperature magnetic quantum cellular automata. Science 287:1466

    ADS  Google Scholar 

  94. Alam MT, Siddiq MJ, Bernstein GH, Neimier M, Porod W, Hu XS (2010) On-chip clocking for nanomagnet logic devices. IEEE Trans Nanotech 9:348

    ADS  Google Scholar 

  95. Carr WJ (1974) Propagation of magnetic domain-walls by a self-induced current distribution. J Appl Phys 45:394

    Google Scholar 

  96. Berger L (1974) Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J Phys Chem Solids 35:947

    Google Scholar 

  97. Freitas PP, Berger L (1985) Observation of s-d exchange force between domain-walls and electric-current in very thin permalloy-films. J Appl Phys 57:1266

    Google Scholar 

  98. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353

    Google Scholar 

  99. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Mater 159:L1

    ADS  Google Scholar 

  100. Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature (Lond) 428:539

    ADS  Google Scholar 

  101. Amiri PK et al (2011) Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions. Appl Phys Lett 98:112507

    ADS  Google Scholar 

  102. Fukami S et al. (2009) Digest of technical papers, symposium on VLSI technology, vol 230 Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, USA

    Google Scholar 

  103. Fashami MS, Atulasimha J, Bandyopadhyay S (2012) Magnetization dynamics, throughput and energy dissipation in a universal multiferroic nanomagnetic logic gate with fan-in and fan-out. Nanotechnology 23:105201

    ADS  Google Scholar 

  104. Bennett CH (1982) The thermodynamics of computation – A review. Int J Theor Phys 21:905

    Google Scholar 

  105. Atulasimha J, Bandyopadhyay S (2010) Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Appl Phys Lett 97:173105

    ADS  Google Scholar 

  106. Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677

    ADS  Google Scholar 

  107. Spedalieri FM, Jacob AP, Nikonov D, Roychowdhury VP (2011) Performance of magnetic quantum cellular automata and limitations due to thermal noise. IEEE Trans Nanotech 10:537

    ADS  Google Scholar 

  108. Roy K, Bandyopadhyay S, Atulasimha J (2013) Binary switching in a ‘symmetric’ potential landscape. Nat Sci Rep 3:3038

    ADS  Google Scholar 

  109. Carlton D, Lambson B, Scholl A, Young A, Ashby P, Dhuey S, Bokor J (2012) Investigation of defects and errors in nanomagnetic logic circuits. IEEE Trans Nanotech 11:560

    Google Scholar 

  110. Salehi-Fashami M, Atulasimha J, Bandyopadhyay S, Munira K, Ghosh A. (2013) Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: Reliability of nanomagnetic logic. IEEE Trans Nanotechnol Vol. 12:1206

    Google Scholar 

  111. Csaba G, Porod W (2010) Fourteenth international workshop on computational electronics. IEEE, Piscataway

    Google Scholar 

  112. Roy K, Bandyopadhyay S, Atulasimha J (2012) Energy dissipation and switching delay in stress-induced switching of multiferroic nanomagnets in the presence of thermal fluctuations. J Appl Phys 112:023914

    ADS  Google Scholar 

  113. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17:669

    Google Scholar 

  114. Stephen NG (2006) On energy harvesting from ambient vibration. J Sound Vib 293:409

    ADS  Google Scholar 

  115. Winkler R (2003) Spin-orbit coupling effects in two-dimensional electron and hole systems, vol 191, Springer tracts in modern physics. Springer, Berlin

    Google Scholar 

  116. Debald S, Emary C (2005) Spin-orbit-driven coherent oscillations in a few-electron quantum dot. Phys Rev Lett 94:226803

    ADS  Google Scholar 

  117. Flindt C, Sorensen A, Flensberg K (2006) Spin-photon entangling diode. Phys Rev Lett 97:240501

    ADS  Google Scholar 

  118. Moroz AV, Barnes CHW (1999) Effect of spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys Rev B 60:14272

    ADS  Google Scholar 

  119. Hattori K, Okamoto H (2006) Spin separation and spin Hall effect in quantum wires due to lateral-confinement-induced spin-orbit-coupling. Phys Rev B 74:155321

    ADS  Google Scholar 

  120. Xing Y, Sun Q-F, Tang L, Hu J (2006) Accumulation of opposite spins on the transverse edges of a two-dimensional electron gas in a longitudinal electric field. Phys Rev B 74:155313

    ADS  Google Scholar 

  121. Jiang Y, Hu L (2006) Kinetic magnetoelectric effect in a two-dimensional semiconductor strip due to boundary confinement-induced spin-orbit coupling. Phys Rev B 74:075302

    ADS  Google Scholar 

  122. Hew WK et al (2008) Spin-incoherent transport in quantum wires. Phys Rev Lett 101:036801

    ADS  Google Scholar 

  123. Crook R et al (2006) Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire. Science 312:1359

    ADS  Google Scholar 

  124. Reilly DJ et al (2002) Density-dependent spin polarization in ultra-low-disorder quantum wires. Phys Rev Lett 89:246801

    ADS  Google Scholar 

  125. Kim S, Hashimoto Y, Iye Y, Katsumoto S (2011) arXiv:1102.4648v1

    Google Scholar 

  126. Pepper M, and Bird J (2008) J Phys Condens Matter 20:16301

    Google Scholar 

  127. Gold A, Calmels L (1996) Valle- and spin-occupancy instability in the quasi-one-dimensional electron gas. Philos Mag Lett 74:33

    ADS  Google Scholar 

  128. Bird JP, Ochiai Y (2004) Electron spin polarization in nanoscale constrictions. Science 303:1621

    Google Scholar 

  129. Rokhinson LP, Pfeiffer L, West K (2006) Spontaneous spin polarization in quantum point contacts. Phys Rev Lett 96:156602

    Google Scholar 

  130. Rokhinson LP, Pfeiffer L, West K (2008) Detection of spin polarization in quantum point contacts. J Phys Condens Matter 20:164212

    Google Scholar 

  131. Jaksch P, Yakimenko I, Berggren K-F (2006) From quantum point contacts to quantum wires: Density functional calculations with exchange and correlation effects. Phys Rev B 74:235320

    ADS  Google Scholar 

  132. Thomas KJ et al (1996) Possible spin polarization in a one-dimensional electron gas. Phys Rev Lett 77:135

    ADS  Google Scholar 

  133. Reilly DJ (2005) Phenomenological model for the 0.7 conductance feature in quantum wires. Phys Rev B 72:033309

    ADS  Google Scholar 

  134. Cortes-Huerto R, Ballone P (2010) Spontaneous spin polarization and charge localization in metal nanowires: the role of a geometric constriction. J Phys Condens Matter 22:295302

    Google Scholar 

  135. Shailos A, Shok A, Bird JP, Akis R, Ferry DK, Goodnick SM, Lilly MP, Reno JL, Simmons JA (2006) Linear conductance of quantum point contacts with deliberately broken symmetry. J Phys Condens Matter 18:1715

    ADS  Google Scholar 

  136. Chen JC, Lin Y, Lin KT, Ueda T, Koniyma S (2009) Effect of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire. Appl Phys Lett 94:01205

    Google Scholar 

  137. Liu KM, Juang CH, Umansky V, Hsu SY (2010) Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement. J Phys Condens Matter 22:395303

    Google Scholar 

  138. Debray P, Rahman SMS, Wan J, Newrock RS, Cahay M, Ngo AT, Ulloa SE, Herbert ST, Muhammad M, Johnson M (2009) All-electrical quantum point contact spin valves. Nat Nanotech 4:759

    ADS  Google Scholar 

  139. Wan J, Cahay M, Debray P, Newrock RS (2009) On the physical origin of the 0.5 plateau in the conductance of quantum point contacts. Phys Rev B 80:155440

    ADS  Google Scholar 

  140. Wan J, Cahay M, Debray P, Newrock RS (2011) Spin texture of conductance anomalies in quantum point contacts. J Nanoelectron Optoelectron 6:95

    Google Scholar 

  141. Bandyopadhyay S, Cahay M (2005) Proposal for a spintronic femto-Tesla magnetic field sensor. Physica E 27:98–103

    ADS  Google Scholar 

  142. Wan J, Cahay M, Bandyopadhyay S (2007) A digital switch and femto-Tesla magnetic field sensor based on Fano resonance in a spin field effect transistor. J Appl Phys 102:034301

    ADS  Google Scholar 

  143. Atulasimha J, Bandyopadhyay S (2011) Proposal for an ultrasensitive spintronic strain and stress sensor. J Phys D Appl Phys 44:205301

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriyo Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bandyopadhyay, S., Cahay, M. (2013). General Principles of Spin Transistors and Spin Logic Devices. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7604-3_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7604-3_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7604-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics