Skip to main content

Osmium

  • Chapter
  • First Online:
Ultra-High Temperature Materials I
  • 3403 Accesses

Abstract

Osmium is the element No. 76 of the periodic table (period—6, group—8 (or VIIIa), relates to transition metals) with the ground state level 5D4 and electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 6 6 s 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steurer W (1996) Crystal structure of the metallic elements. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 1, pp. 1-46. Elsevier Science BV, Amsterdam

    Google Scholar 

  2. Cotton FA, Wilkinson G (1965) Advanced inorganic chemistry. Wiley, New York, London

    Google Scholar 

  3. Akhmetov NS (2001) Obschaya i neorganicheskaya khimiya (General and inorganic chemistry), 4th ed. Vysshaya Shkola, Moscow (in Russian)

    Google Scholar 

  4. Kotelnikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI (1968) Osobo tugoplavkie elementy i soedineniya (Extra refractory elements and compounds). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  5. Zefirov AP (ed), Veryatin UD, Mashirev VP, Ryabtsev NG, Tarasov VI, Rogozkin BD, Korobov IV (1965) Termodinamicheskie svoistva neorganicheskikh veschestv (Thermodynamic properties of inorganic substances). Atomizdat, Moscow (in Russian)

    Google Scholar 

  6. Speight JG, ed (2005) Lange’s handbook of chemistry, 16th ed. McGraw-Hill, New York

    Google Scholar 

  7. Lide DR, ed (2010) CRC handbook of chemistry and physics, 90th ed. CRC Press, Boca Raton, New York

    Google Scholar 

  8. Martienssen W (2005) The elements. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 45-158. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 1. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  10. Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 2. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  11. Lyakishev NP, ed (1997) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 2. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  12. Lyakishev NP, ed (2001) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 1. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  13. Lyakishev NP, ed (1996) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 1. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  14. Massalski TB, Subramanian PR, Okamoto H, Kacprzak L, eds (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Metals Park, Ohio

    Google Scholar 

  15. Savitskii EM, Polyakova VP, Gorina NB, Roshan NR (1975) Metallovedenie platinovykh metallov (Metallography of platinum metals). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  16. Holleck H (1984) Binäre und ternäre Carbid- und Nitridsysteme der Ubergangsmetalle (Binary and ternary carbide and nitride systems of the transition metals). Gebrüder Bornträeger, Berlin (in German)

    Google Scholar 

  17. Savitskii EM, Gribulya VB (1977) Prognozirovanie neorganicheskikh soedinenii s pomoschyu EVM (The prediction of inorganic compounds by means of computing). Nauka, Moscow (in Russian)

    Google Scholar 

  18. Gladyshevskii EI, Bodak OI (1982) Kristallokhimiya intermetallicheskikh soedinenii redkozemelnykh metallov (The crystal chemistry of intermetallic compounds of rare earth metals). Vyshcha Shkola, Lviv (in Russian)

    Google Scholar 

  19. Brewer L, Lamoreaux RH (1980) Phase diagrams. In: Brewer L (ed) Molybdenum. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 7, pp. 195-356. International Atomic Energy Agency, Vienna

    Google Scholar 

  20. Savitskii EM, ed (1984) Blagorodnye metally (Noble metals). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  21. Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3-128

    Google Scholar 

  22. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical report). Pure Appl Chem 75(6):683-800

    Google Scholar 

  23. Wieser ME (2006) Atomic weights of the elements 2005. (IUPAC Technical report). Pure Appl Chem 78(11):2051-2066

    Google Scholar 

  24. Popova SV, Fomitcheva LN (1982) Novye fazy v sistemakh Re-Ga i Os-Ga, poluchennye pri vysokom davlenii (The new phases in the Re-Ga and Os-Ga systems obtained at high pressure). Izv AN SSSR Neorg Mater 18(2):251-255 (in Russian)

    Google Scholar 

  25. Gladyshevskii EI (1971) Kristallokhimiya silitsidov i germanidov (The crystal chemistry of silicides and germanides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  26. Samsonov GV, Bondarev VN (1968) Germanidy (Germanides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  27. Samsonov GV, Drozdova SV (1972) Sulfidy (Sulfides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  28. Schroder RH, Schmitz-Pranghe N, Kohlhaas R (1972) Experimentelle Bestimmung der Gitterparameter der Platinmetalle im Temperaturbereich –190 bis 1709 °C (Experimental determination of the lattice parameters of platinum metals in the temperature range from –190 to 1709 °C). Z Metallkd 63:12-16 (in German)

    Google Scholar 

  29. Degussa AG (1995) Edelmetal – Taschenbuch (Precious Metal – Paperback), 2nd ed. Hüthig, Heidelberg (in German)

    Google Scholar 

  30. Benner LS, Suzuki T, Meguro K, Tanaka S, eds (1991) Precious metals, science, technology. International Precious Metals Institute, Allentown

    Google Scholar 

  31. Antonov VE, Belash IT, Malyshev VYu, Ponyatovsky EG (1984) Solubility of hydrogen in the platinum metals under high pressure. Platinum Met Rev 28(4):158-163

    Google Scholar 

  32. Obrowski W (1963) Alloys of ruthenium with boron, beryllium and aluminium. Metall 17(2):108-112

    Google Scholar 

  33. Verkhorobin LF, Kovtun GP, Kruglykh AA, Matyushenko NN, Pugachev AS, Tikhinskii GF (1971) Berillidy ruteniya, osmiya, rodiya i iridiya sostava M2Be17 (Ruthenium, osmium, rhodium and iridium beryllides with M2Be17 composition). Izv AN SSSR Metally (6):168-171 (in Russian)

    Google Scholar 

  34. Cannon JF, Robertson DL, Tracy HH, Lawson AC (1973) The effect of high pressure on the crystal structure of LaOs2 and CeOs2. J Less-Common Met 31(1):174-176

    Google Scholar 

  35. Iandelli A, Palenzona A (1976) Das Verhalten des Ytterbiums mit den Metallen der achten Gruppe des periodischen Systems (The reaction of the ytterbium to the metals of the eighth group of the periodic table). Rev Chim Miner 13(1):55-61 (in German)

    Google Scholar 

  36. Kalyaeva NV, Popova SV (1983) Vliyanie vysokogo davleniya na obrazovanie promezhutochnykh faz v sisteme Os-Sn (The effect of high pressure on the formation of intermediate phases in the Os-Sn system). Izv AN SSSR Neorg Mater 19(7):1106-1109 (in Russian)

    Google Scholar 

  37. Knapton AG (1963) The uranium-osmium system. J Nucl Mater 9(3):309-319

    Google Scholar 

  38. Eremenko VN, Shtepa TD, Semenova OL (1971) Diagramma sostoyaniya Ti-Os (The Ti-Os constitution diagram). Izv AN SSSR Metally (4):210-213 (in Russian)

    Google Scholar 

  39. Eremenko VN, Shtepa TD, Semenova OL (1972) Diagrama stanu tsirkonii – osmii v oblasti 50-100 at.% osmiyu (Constitution diagram zirconium – osmium in the area of 50-100 at.% osmium). Dopov Akad Nauk Ukr RSR Ser B 34(1):50-52 (in Ukrainian)

    Google Scholar 

  40. Eremenko VN, Semenova OL, Shtepa TD (1976) Diagrama stanu tsirkonii – osmii (Constitution diagram zirconium – osmium). Dopov Akad Nauk Ukr RSR Ser A Fiz Mat Tekh Nauki 38(7):661-664 (in Ukrainian)

    Google Scholar 

  41. Eremenko VN, Semenova EA, Shtepa TD (1978) Vliyanie rodiya, iridiya i osmiya na polimorfnoe (α↔β)-prevrashchenie tsirkoniya (The effects of rhodium, iridium and osmium on the (α↔β)-transformation of zirconium). Izv AN SSSR Metally (2):200-203 (in Russian)

    Google Scholar 

  42. McCarthy SL, Schmidt L (1971) A new compound in the zirconium-osmium alloy system. J Less-Common Met 23(2):241-242

    Google Scholar 

  43. Inoue A, Matsuzaki K, Masumoto T, Chen HS (1986) Superconducting and electrical properties of amorphous zirconium – transition metal binary alloys. J Mater Sci 21(4):1258-1268

    Google Scholar 

  44. Waterstrat RM (1983) The Hf-Os constitution diagram. J Less-Common Met 95(2):335-339

    Google Scholar 

  45. Raub E, Röschel E (1966) Die Vanadium-Osmium-Legierungen (The vanadium-osmium alloys). Z Metallkd 57(6):470-472

    Google Scholar 

  46. Waterstrat RM, Manuszewski RC (1977) The niobium-osmium constitution diagram. J Less-Common Met 51(1):55-67

    Google Scholar 

  47. Svechnikov VN, Dmitrieva GV, Kobzenko GF, Shurin AK (1964) Diagramma fazovykh ravnovesii sistemy khrom-osmii (Phase equilibrium diagram in the chromium-osmium system). Doklady AN SSSR 158(3):668-670 (in Russian)

    Google Scholar 

  48. Venkatraman M, Neumann JP (1990) The Cr-Os (chromium-osmium) system. Bull Alloy Phase Diagrams 11(1):8-11

    Google Scholar 

  49. Taylor A, Doyle N, Kagle BJ (1962) The constitution diagram of the system molybdenum-osmium. J Less-Common Met 4(5):436-450

    Google Scholar 

  50. Erley W, Wagner H (1973) Interdiffusion in the system molybdenum-osmium. Phys Status Solidi A 19(1):K23-K26

    Google Scholar 

  51. Darby JB, Jr, Lam DJ, Norton LJ, Downey JW (1962) Intermediate phases in binary systems of technetium-99 with several transition elements. J Less-Common Met 4(6):558-563

    Google Scholar 

  52. Kubaschewski O (1982) Iron binary phase diagrams. Springer, Berlin

    Google Scholar 

  53. Swartzendruber LJ, Sundman B (1983) The Fe-Os (iron-osmium) system. Bull Alloy Phase Diagrams 4(4):396-399

    Google Scholar 

  54. Bannykh OA, Budberg SP, Alisova SP (1986) Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh system na osnove zheleza (The constitution diagrams of binary and multi-component systems based on iron). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  55. Tylkina MA, Polyakova VP, Savitskii EM (1962) Diagramma sostoyaniya splavov sistemy osmii-rutenii (The constitution diagram of the ruthenium-osmium alloys system). Zh Neorg Khim 7(6):1467-1468 (in Russian)

    Google Scholar 

  56. Tylkina MA, Polyakova VP, Khamidov OKh (1963) Diagramma sostoyaniya sistemy palladii-osmii (The constitution diagram of the palladium-osmium system). Zh Neorg Khim 8(3):776-779 (in Russian)

    Google Scholar 

  57. Voronova LI, Polyakova VP, Savitskii EM (1984) Alloys of the system Pt-Os. Rus Metall (5):201-203

    Google Scholar 

  58. Karakaya I, Thompson WT (1986) The Ag-Os (silver-osmium) system. Bull Alloy Phase Diagrams 7(4):360-362

    Google Scholar 

  59. Okamoto H, Massalski TB (1984) The Au-Os (gold-osmium) system. Bull Alloy Phase Diagrams 5(4):382

    Google Scholar 

  60. Kempter CP, Fries RG (1961) Crystallography of the Ru-B and Os-B systems. J Chem Phys 34(6):1994-1995

    Google Scholar 

  61. Roof RB Jr, Kempter CP (1962) New orthorhombic phases in the Ru-B and Os-B systems. J Chem Phys 37(7):1473-1476

    Google Scholar 

  62. Esslinger P, Schubert K (1957) Zur Systematik der Strukturfamilie des NiAs. I. Verbeitung der Strukturen der NiAs-Familie (The systematics of the family structure of NiAs. I. Distribution of the structures of NiAs family). Z Metallkd 48(3):126-134 (in German)

    Google Scholar 

  63. Berezhnoy AS (1958) Kremnii i ego binarnye sistemy (Silicon and its binary systems). UkrSSR Academy of Sciences, Kyiv (in Russian)

    Google Scholar 

  64. Finnie LN (1962) Structures and compositions of the silicides of ruthenium, osmium, rhodium and iridium. J Less-Common Met 4(1):24-34

    Google Scholar 

  65. Samsonov GV, Dvorina LA, Rud BM (1979) Silitsidy (Silicides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  66. Schellenberg L, Braun HF, Muller J (1988) The osmium-silicon phase diagram. J Less-Common Met 144(2):341-350

    Google Scholar 

  67. Obolonchik VA (1972) Selenidy (Selenides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  68. Chizhikov DM, Schastlivyi VP (1966) Tellur i telluridy (Tellurium and tellurides). Nauka, Moscow (in Russian)

    Google Scholar 

  69. Nekrasov BV (1973) Osnovy obschei khimii (Foundations of general chemistry), 3rd ed., Vol. 2. Khimiya, Moscow (in Russian)

    Google Scholar 

  70. Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfried G, Schlamp G, Stickler R, Warlimont H (2005) Metals. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 161-430. Springer, Berlin, Heidelberg

    Google Scholar 

  71. Hebbache M, Stuparevic L, Zivkovic D (2006) A new superhard material: osmium diboride OsB2. Solid State Commun 139:227-231

    Google Scholar 

  72. FactSage (2010) Data from SGnobl – SGTE noble metal alloy database. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Fe-Ir-Os_650.jpg&dir=SGnobl and http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Fe-Ir-Os_900.jpg&dir=SGnobl Collection of phase diagrams. Accessed 6 September 2011.

  73. Khoruzhaya VG (1996) Interaction of transition metals of group IV with high-melting platinum metals in binary and ternary systems. Powder Metall Met Ceram 35(7-8):433-440

    Google Scholar 

  74. Nowotny H, Rogl P (1977) Ternary metal borides. In: Matkovich VI (ed) Boron and refractory borides, pp. 413-438. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  75. Rogl P, Benesovsky F, Nowotny H (1972) Über einige Komplexboride mit Platinmetallen (About complex boride with some platinum metals). Monatsh Chem 103(4):965-989 (in German)

    Google Scholar 

  76. Argon AS (1996) Mechanical properties of single-phase crystalline media: deformation at low temperatures. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 3, pp. 1877-1955. Elsevier Science BV, Amsterdam

    Google Scholar 

  77. Chabot B, Cenzual K, Parthe E (1980) Sc11Ir4, Sc11Os4, Sc11Ru4, Zr11Os4 with a new cubic structure type described by means of a cluster concept. Acta Crystallogr B 36:7-11

    Google Scholar 

  78. Thompson JR (1964) Alloys of thorium with certain transition metals. II. The systems thorium-osmium, thorium-iridium and thorium-platinum. J Less-Common Met 6(1):3-10

    Google Scholar 

  79. Korst WL, Finnie LN, Searcy AW (1957) The crystal structure of the monosilicides of osmium, iridium and ruthenium. J Phys Chem 61(11):1541-1543

    Google Scholar 

  80. Sangster J, Pelton AD (1992) The Li-Os (lithium-osmium) system. J Phase Equilib 13(1):62-63

    Google Scholar 

  81. Loebich O Jr, Raub ChJ (1981) Reactions beween some alkali metals and platinum group metals. Platinum Met Rev 25(3):113-120

    Google Scholar 

  82. Moffatt WG (1986) Binary phase diagrams handbook. General Electric Co., Schenectady, New York

    Google Scholar 

  83. Gulyaev BB (1968) Obobshchenie diagram sostoyaniya metallicheskikh system (Generalization of the phase diagrams of metallic systems). In: Savitskii EM (ed) Diagrammy sostoyaniya metallicheskikh system (Phase diagrams of metallic systems), p. 257-267. Nauka, Moscow (in Russian)

    Google Scholar 

  84. Savitskii EM, Polyakova VP (1975) Physico-chemical research in noble metals. J Less-Common Met 43(1-2):169-177

    Google Scholar 

  85. Palenzona A (1980) The crystal structure of the rare-earth-rich osmium compounds R3Os and Y3Os. J Less-Common Met 72(1):P21-P24

    Google Scholar 

  86. Dwight AE, Downey JW, Conner RA Jr (1966) Laves phases of the scandium group elements with ruthenium, rhodium, osmium, iridium and platinum. Trans Metall Soc AIME 236:1509-1510

    Google Scholar 

  87. Chiotti P, Akhachinksij VV, Ansara I, Rand MH (1982) The Os-Th (osmium-thorium) system. Bull Alloy Phase Diagrams 3:101-102

    Google Scholar 

  88. Thomson JR (1964) Alloys of thorium with certain transition metals. II. The systems thorium-osmium, thorium-iridium and thorium-platinum”, J Less-Common Met 6:3-10

    Google Scholar 

  89. Nishioka T, Kimura K, Matsui H, Kontani M (1994) Magnetic, transport and thermal properties of itinerant magnetic U-T (T = Os, Ru and Rh) systems. J Phys Soc Jpn 63:2722-2730

    Google Scholar 

  90. Lam DJ, Mitchell AW (1972) Laves phases of actinide elements. J Nucl Mater 44(3):279-284

    Google Scholar 

  91. Susz CP, Flükiger R, Jorda JL, Muller J (1979) Equilibrium phase fields in the vanadium-osmium system. J Less-Common Met 63:P45–P52

    Google Scholar 

  92. Smith JF (1988) The Os-V (osmium-vanadium) system. J Alloy Phase Diagrams 4:122-126

    Google Scholar 

  93. Yamauchi R, Miyakawa M, Sasao K, Fukamichi K (2000) X-ray diffraction and magnetic properties of β-Mn1-x Os x alloys. J Alloys Compd 311:124-129

    Google Scholar 

  94. Guminski C (1995) The Hg-Os (mercury-osmium) system. J Phase Equilib 16:81-82

    Google Scholar 

  95. Guminski C (1989) Selected properties of simple amalgams. J Mater Sci 24:2661-2676

    Google Scholar 

  96. Dieva EN (1974) Rastvorimost tugoplavkikh metallov v zhidkom indii (The solubility of refractory metals in liquid indium). In: Bamburov VG (ed) Fiziko-khimicheskie issledovaniya zhidkikh metallov i splavov (Physico-chemical studies of liquid metals and alloys), p. 105-106. Uralskii Nauchnyi Tsentr AN SSSR, Sverdlovsk (in Russian)

    Google Scholar 

  97. Liu YQ, Shao G, Homewood KP (2001) Thermodynamic assessment of the Ru-Si and Os-Si systems. J Alloys Compd 320:72-79

    Google Scholar 

  98. Yu R, Zhan Q, De Jonghe LC (2007) Crystal structures of and displacive transitions in OsN2, IrN2, RuN2 and RhN2. Angew Chem Int Ed 46:1136-1140

    Google Scholar 

  99. Chernogorenko VB, Solomatina LY (1983) The synthesis and properties of osmium diphosphide and the equilibrium diagram of the Os-P system. Russ J Inorg Chem 28:1100-1102

    Google Scholar 

  100. Flörke U, Jeitschko W (1982) Preparation and properties of new modifications of RuP4 and OsP4 with CdP4-type structure. J Less-Common Met 86:247-253

    Google Scholar 

  101. Kuzmin RN, Zhuravlev NN, Losievskaya SA (1960) The atomic structure of RuSb2 and OsSb2. Sov Phys Crystallogr 5:202-206

    Google Scholar 

  102. Kjekshus A, Rakke T, Andresen AF (1977) Compounds with the marcasite type crystal structure. XII. Structural data for RuP2, RuAs2, RuSb2, OsP2, OsAs2, and OsSb2. Acta Chem Scand A 31:253-259

    Google Scholar 

  103. Okamoto H (1994) The Bi-Os (bismuth-osmium) system. J Phase Equilib 15:189-190

    Google Scholar 

  104. Okamoto H (1994) Comment on Os-S (osmium-sulfur) system. J Phase Equilib 15:455

    Google Scholar 

  105. Kjekshus A, Rakke T (1975) Compounds with the marcasite type crystal structure. XI. High temperature studies of chalcogenides. Acta Chem Scand A 29:443-452

    Google Scholar 

  106. Drews T, Supel J, Hagenbach A, Seppelt K (2006) Solid state molecular structures of transitional metal hexafluorides. Inorg Chem 45:3782-3788

    Google Scholar 

  107. Waterstrat RM, Kuentzler R, Muller J (1990) Structural instabilities and superconductivity in quasi-binary Mn5Si3-type compounds. J Less-Common Met 167:169-178

    Google Scholar 

  108. Houghton JS, Dewees M, Lawson AC, Smith JL (1982) Superconductivity of Th(Ir,Os)2 and Th(Ir,Ru)2 alloys. J Less-Common Met 83:L47–L49

    Google Scholar 

  109. English JJ (1961) Binary and ternary phase diagrams of columbium, molybdenum and tungsten. Report AD-TR-257-739, Contract AF 33(616)-7747, pp. 1-241. Defence Metals Information Center, Battelle Memorial Institute, Columbus, Ohio

    Google Scholar 

  110. Zegler ST (1965) Superconductivity in Cr3Si-type ternary phases with niobium and group VIII metals. Phys Rev 137:A1438–A1440

    Google Scholar 

  111. Winter M (2012) WebElements: the periodic table on the WWW. Osmium: enthalpies and thermodynamic properties. http://www.webelements.com/osmium/thermochemistry.html Accessed 20 May 2013.

  112. Okamoto H (2009) The Ni-Os (nickel-osmium) system. J Phase Equilib Diffus 30(6):662

    Google Scholar 

  113. Okamoto H (1994) The Ir-Os (iridium-osmium) system. J Phase Equilib 15(1):55-57

    Google Scholar 

  114. Okamoto H (2007) The Hf-Os (hafnium-osmium) system. J Phase Equilib Diffus 28(6):593

    Google Scholar 

  115. Okamoto H (1994) Comment on Hf-Os (hafnium-osmium) system. J Phase Equilib 15(6):653-654

    Google Scholar 

  116. Okamoto H (2007) The Os-Si (osmium-silicon) system. J Phase Equilib Diffus 28(4):410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Shabalin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shabalin, I.L. (2014). Osmium. In: Ultra-High Temperature Materials I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7587-9_5

Download citation

Publish with us

Policies and ethics