Skip to main content

Introgression Libraries with Wild Relatives of Crops

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

The narrow genetic base of many crops raises concerns about the prospects for continued genetic gains necessary to meeting the increasing demand for agricultural output in an age of climate changes. The development and application of the introgression line (IL) breeding approach was proposed to more efficiently harness the genetic potential stored in exotic germplasm for the improvement of agricultural performance of elite germplasm, thereby expanding the genetic base of our crops. In tomato, the IL approach has been used for almost two decades, and the studies conducted on the Solanum pennellii LA0716 ILs (the founding “exotic library”) using cutting-edge ‘omics’ platforms have clearly demonstrated the effectiveness of these congenic and permanent resources in fundamental biology, and for exploring and utilizing the hidden breeding potential of wild species for practical use in agriculture. Since the pioneer studies conducted in tomato, collections of ILs representing different fractions of the exotic parent genome have been developed for a wide range of crops. The results indicate that crop wild relatives are a rich reservoir of potentially valuable alleles, many of which would not have been predicted from the mere phenotypes of the wild plants. Therefore, exotic libraries, combined with the ever-growing body of genomics tools, are expected to further improve the efficiency with which the nature of quantitative trait variation will be unveiled and wild relatives of crops will contribute to face future breeding challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali ML, Sanchez PL, Yu S-B et al (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234

    Google Scholar 

  • Almeida J, Quadrana L, Asís R et al (2011) Genetic dissection of vitamin E biosynthesis in tomato. J Exp Bot 62:3781–3798

    CAS  PubMed  Google Scholar 

  • Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    CAS  PubMed  Google Scholar 

  • Alpert K, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A 93:15503–15507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arikita FN, Azevedo MS, Scotton DC et al (2013) Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Sci 199-200:121–130

    Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    CAS  PubMed  Google Scholar 

  • Atri C, Kumar B, Kumar H et al (2012) Development and characterization of Brassica juncea-fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt). BMC Genet 13:104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R et al (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Phys 152:71–84

    CAS  Google Scholar 

  • Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    CAS  PubMed  Google Scholar 

  • Bedinger PA, Chetelat RT, McClure B et al (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24:171–187

    PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D et al (1998) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170-180 and 1191–1196

    Google Scholar 

  • Bessey CE (1906) Crop improvement by utilizing wild species. Am Breed Assoc II:112–118

    Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    PubMed  Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K et al (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brog M, Tripodi P, Cammareri M et al (2011) Towards phenomics of the sequenced genomes of the cultivated tomato and its wild ancestor Solanum pimpinellifolium. In: Proceedings of the Joint Meeting AGI-SIBV-SIGA Assisi, Italy, 19-22 September 2011. ISBN 978-88-904570-2–9

    Google Scholar 

  • Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123:293–306

    PubMed Central  PubMed  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    CAS  PubMed  Google Scholar 

  • Causse M, Chaïb J, Lecomte L et al (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115:429–442

    CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC et al (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    CAS  PubMed  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    PubMed  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L et al (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159:1644–1657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen KY, Cong B, Wing R et al (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    CAS  PubMed  Google Scholar 

  • Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573

    CAS  PubMed  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    CAS  PubMed  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci U S A 99:13606–13611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dal Cin V, Kevany B, Fei Z, Klee HJ (2009) Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions. Theor Appl Genet 119:1183–1192

    CAS  PubMed  Google Scholar 

  • Desjardins CA, Gadau J, Lopez JA et al (2013) Fine-scale mapping of the Nasonia genome to chromosomes using a high-density genotyping microarray. G3 (Bethesda) 3:205–215

    Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    CAS  Google Scholar 

  • Di Matteo A, Ruggieri V, Sacco A et al (2013) Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci 205-206:87–96

    Google Scholar 

  • Di Matteo A, Sacco A, Anacleria M et al (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163

    PubMed Central  PubMed  Google Scholar 

  • Do PT, Prudent M, Sulpice R et al (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154:1128–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doganlar S, Frary A, Ku H-M, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    CAS  PubMed  Google Scholar 

  • Doi K, Iwata N, Yoshimura A (1997) The construction of chromosome substitution introgression lines of African rice (Oryza glaberrima Steud.) in the background of japonica (O. sativa L.). Rice Genet Newslett 14:39–41

    CAS  Google Scholar 

  • Doroszuk A, Snoek LB, Fradin E et al (2009) A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res 37:e110

    PubMed Central  PubMed  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    CAS  PubMed  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ et al (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the soluble solids yield of tomato hybrids. Theor Appl Genet 88:891–897

    CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  Google Scholar 

  • Falke KC, Frisch M (2011) Power and false-positive rate in QTL detection with near-isogenic line libraries. Heredity (Edinb) 106:576–584

    CAS  Google Scholar 

  • Falke KC, Miedaner T, Frisch M (2009b) Selection strategies for the development of rye introgression libraries. Theor Appl Genet 119:595–603

    CAS  Google Scholar 

  • Falke KC, Susić Z, Hackauf B et al (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117:641–652

    Google Scholar 

  • Falke KC, Susić Z, Wilde P et al (2009a) Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238

    Google Scholar 

  • Falke KC, Wilde P, Miedaner T (2009c) Rye introgression lines as source of alleles for pollen-fertility restoration in Pampa CMS. Plant Breeding 128:528–531

    Google Scholar 

  • Fang S, Yukilevich R, Chen Y et al (2012) Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species. PLoS Genet 8:e1002795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Silva I, Moreno E, Essafi A et al (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940

    PubMed  Google Scholar 

  • Finkers R, van Heusden AW, Meijer-Dekens F et al (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    PubMed Central  PubMed  Google Scholar 

  • Foncéka D, Hodo-Abalo T, Rivallan R et al (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    PubMed Central  PubMed  Google Scholar 

  • Foncéka D, Tossim HA, Rivallan R et al (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7:e48642

    PubMed Central  PubMed  Google Scholar 

  • Frary A, Doganlar S, Frampton A et al (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    CAS  PubMed  Google Scholar 

  • Frary A, Göl D, Keleş D et al (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A et al (2000) fw-2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    CAS  PubMed  Google Scholar 

  • Fridman E, Carrari F, Liu YS et al (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    CAS  PubMed  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L et al (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266:821–826

    CAS  PubMed  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A 97:4718–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fridman E, Zamir D (2012) Next-generation education in crop genetics. Curr Opin Plant Biol 15:218–223

    PubMed  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T et al (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. parviflorum cross. Theor Appl Genet 100:1025–1042

    CAS  Google Scholar 

  • Garcia GM, Stalker HT, Kochert G (1995) Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38:166–176

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    CAS  PubMed  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    CAS  PubMed  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gong P, Zhang J, Li H et al (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563–3575

    CAS  PubMed  Google Scholar 

  • Grandillo S, Chetelat R, Knapp S et al (2011) Solanum sect. Lycopersicon. In: Kole C (ed) Vegetables. Wild crop relatives: genomic and breeding resources, vol 5. Springer, Dordrecht, pp 129–215

    Google Scholar 

  • Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Google Scholar 

  • Grandillo S, Tanksley SD, Zamir D (2008) Exploitation of natural biodiversity through genomics. In: Varshney RK, Tuberosa R (eds) Genomics approaches and platforms. Genomics assisted crop improvement, vol 1. Springer, Dordrecht, pp 121–150

    Google Scholar 

  • Grandillo S, Termolino P, van der Knaap E (2013) Molecular mapping of complex traits in tomato. In: Genetics, Genomics and Breeding of crop plants (Series Editor C. Kole) Volume: Genetics, Genomics and Breeding of Tomato. (Volume editors B.E. Liedl, J.A. Labate, A.J. Slade, J.R. Stommel, C. Kole). Science Publishers, Enfield, NH, USA, pp 150–227

    Google Scholar 

  • Gu J, Yin X, Struik PC et al (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63:455–469

    CAS  PubMed  Google Scholar 

  • Guo S, Wei Y, Li X et al (2012) Development and identification of introgression lines from cross of Oryza sativa and Oryza minuta. Rice Sci 20:95–102

    Google Scholar 

  • Gur A, Osorio S, Fridman E et al (2010) hi2-1, a QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theor Appl Genet 121:1587–1599

    PubMed Central  PubMed  Google Scholar 

  • Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9:107–109

    CAS  PubMed  Google Scholar 

  • Gur A, Semel Y, Osorio S et al (2011) Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor Appl Genet 122:405–420

    PubMed Central  PubMed  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245

    PubMed Central  PubMed  Google Scholar 

  • Gutiérrez AG, Carabalí SJ, Giraldo OX et al (2010) Identification of a Rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa * O. glaberrima introgression lines. BMC Plant Biol 10:6

    PubMed Central  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70(1):177–190

    CAS  PubMed  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Maurer A, Pillen K (2012) Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system. BMC Genet 13:88

    PubMed Central  PubMed  Google Scholar 

  • Holtan HE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550

    CAS  PubMed  Google Scholar 

  • Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breed 16:295–311

    CAS  Google Scholar 

  • Jeunken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    Google Scholar 

  • Johal GS, Balint-Kurti P, Weil CF (2008) Mining and harnessing natural variation: a little MAGIC. Crop science 48:2066–2072

    Google Scholar 

  • Johnston PA, Timmerman-Vaughan GM, Farnden KJ, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    PubMed  Google Scholar 

  • Kamenetzky L, Asís R, Bassi S et al (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152:1772–1786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keurentjes JJB, Bentsink L, Alonso-Blanco C et al (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    CAS  PubMed  Google Scholar 

  • Koumproglou R, Wilkes TM, Towson P et al (2002). STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31:355–364

    CAS  PubMed  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene single flower truss drives heterosis for yield in tomato. Nat Genet 42:459–463

    CAS  PubMed  Google Scholar 

  • Kurakazu T, Sobrizal K, Ikeda K et al (2001) Oryza meridionalis chromosomal segment introgression lines in cultivated rice, O. sativa L. Rice Genet Newsl 18:81–82

    Google Scholar 

  • Kuspira J, Unrau J (1957) Genetic analysis of certain characters in common wheat using all chromosome substitution lines. Can J Plant Sci 37:300–326

    Google Scholar 

  • Lee JM, Joung JG, McQuinn R et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    CAS  PubMed  Google Scholar 

  • L’Hôte D, Laissue P, Serres C et al (2010) Interspecific resources: a major tool for quantitative trait locus cloning and speciation research. Bioessays 32:132–142

    PubMed  Google Scholar 

  • Li Z-K, Fu B-Y, Gao Y-M et al (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52

    CAS  PubMed  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    CAS  PubMed  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Google Scholar 

  • Liu H, Ouyang B, Zhang J et al (2012) Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 7:e50785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99:13302–13306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Zhou R, Dong Y et al (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    CAS  PubMed  Google Scholar 

  • Liu Y-S, Gur A, Ronen G et al (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207

    CAS  Google Scholar 

  • Liu YS, Zamir D (1999) Second generation L. pennellii introgression lines and the concept of bin mapping. Tomato Genet Coop Rep 49:26–30

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    CAS  PubMed  Google Scholar 

  • Mageroy MH, Tieman DM, Floystad A et al (2012) A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. Plant J 69:1043–1051

    CAS  PubMed  Google Scholar 

  • Mahone GS, Frisch M, Miedaner T et al (2012) Identification of quantitative trait loci in rye introgression lines carrying multiple donor chromosome segments. Theor Appl Genet 126:49–58

    PubMed  Google Scholar 

  • March TJ, Richter D, Colby T et al (2012) Identification of proteins associated with malting quality in a subset of wild barley introgression lines. Proteomics 12:2843–2851

    CAS  PubMed  Google Scholar 

  • Mathieu S, Dal Cin V, Fei Z et al (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 60:325–337

    CAS  PubMed  Google Scholar 

  • Matus I, Corey A, Filchkin T et al (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    CAS  PubMed  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    PubMed Central  PubMed  Google Scholar 

  • McCouch SR, McNally KL, Wang W et al (2012) Genomics of gene banks: a case study in rice. Am J Bot 99:407–423

    PubMed  Google Scholar 

  • McCouch SR, Sweeney M, Li J et al (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    CAS  Google Scholar 

  • Mei HW, Xu JL, Li ZK et al (2006) QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet 112:648–656

    CAS  PubMed  Google Scholar 

  • Meyer RC, Kusterer B, Lisec J et al (2010) QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet 120:227–237

    PubMed Central  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  PubMed  Google Scholar 

  • Minutolo M, Amalfitano C, Evidente A et al (2013) Polyphenol distribution in plant organs of tomato introgression lines. Nat Prod Res 27:787–795

    CAS  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    CAS  Google Scholar 

  • Morgan MJ, Osorio S, Gehl B et al (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 161:397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moyle LC, Graham EB (2005) Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169:355–373

    CAS  PubMed  Google Scholar 

  • Moyle LC, Nakazato T (2008) Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 179:1437–1453

    PubMed  Google Scholar 

  • Overy, SA, Walker HJ, Malone S et al (2005) Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot 56:287–296

    CAS  PubMed  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O et al (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    CAS  PubMed  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  Google Scholar 

  • Pea G, Paulstephenraj P, Cane MA et al (2009) Recombinant near-isogenic lines: a resource for the mendelization of heterotic QTL in maize. Mol Genet Genomics 281:447–457

    CAS  PubMed  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    CAS  PubMed  Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186

    Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2001) Development of a set of triticum aestivum-aegilops tauschii introgression lines. Hereditas 135:139–143

    CAS  PubMed  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of triticum aestivum-aegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    PubMed  Google Scholar 

  • Plunknett DL, Smith NJH, Williams JT, Murthi-Anishetti N (1987) Gene Banks and the World’s Food. Princeton Univ. Press, Princeton, New Jersey

    Google Scholar 

  • Prudent M, Bertin N, Génard M et al (2010) Genotype-dependent response to carbon availability in growing tomato fruit. Plant Cell Environ 33:1186–1120

    CAS  PubMed  Google Scholar 

  • Prudent M, Causse M, Génard M et al (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60:923–937

    CAS  PubMed  Google Scholar 

  • Prudent M, Lecomte A, Bouchet JP et al (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919

    CAS  PubMed  Google Scholar 

  • Ramsay LD, Jennings DE, Bohuon EJR et al (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567

    CAS  PubMed  Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicum esculentum: segregation and recombination. Genetics 62:753–768

    CAS  PubMed  Google Scholar 

  • Rick CM (1982) The potential of exotic germplasm for tomato improvement. Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press, New York, pp 1–28

    Google Scholar 

  • Ron M, Dorrity MW, de Lucas M et al (2013) Identification of novel loci regulating inter-specific variation in root morphology and cellular development in tomato. Plant Physiol Apr 10. [Epub ahead of print]

    Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97:11102–11107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    CAS  PubMed  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D et al (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    CAS  PubMed  Google Scholar 

  • Sacco A, Di Matteo A, Lombardi N et al (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31:217–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saha S, Jenkins JN, Wu J et al (2006) Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics 172:1927–1938

    CAS  PubMed  Google Scholar 

  • Saha S, Wu J, Jenkins JN et al (2010) Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor Appl Gene 120:1193–1205

    Google Scholar 

  • Saha S, Wu J, Jenkins JN et al (2011) Delineation of interspecific epistasis on fiber quality traits in Gossypium hirsutum by ADAA analysis of intermated G. barbadense chromosome substitution lines. Theor Appl Genet 122:1351–1361

    CAS  PubMed  Google Scholar 

  • Saha S, Wu J, Jenkins JN et al (2013) Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor Appl Genet 126:109–117

    CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    CAS  PubMed  Google Scholar 

  • Salvi S, Corneti S, Bellotti M et al (2011) Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol 11:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    CAS  PubMed  Google Scholar 

  • Sato K, Takeda K (2009) An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619

    CAS  PubMed  Google Scholar 

  • Sayed MA, Schumann H, Pillen K et al (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer N, Semel Y, Balbo I et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    CAS  PubMed  Google Scholar 

  • Schilmiller A, Shi F, Kim J et al (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62:391–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci U S A 109:16377–16382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    PubMed  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    CAS  PubMed  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T et al (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 (Bethesda) 1:187–196

    Google Scholar 

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427

    PubMed Central  PubMed  Google Scholar 

  • Sela-Buurlage MB, Budai-Hadrian O, Pan Q et al (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genomics 265:1104–1111.

    CAS  PubMed  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N et al (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A 103:12981–12986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Severin AJ, Peiffer GA, Xu WW et al (2010) An integrative approach to genomic introgression mapping. Plant Physiol 154:3–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA et al (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266

    CAS  PubMed  Google Scholar 

  • Sim SC, Van Deynze A, Stoffel K et al (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7:e45520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmonds NW (1976) Evolution of crop plants. Longman, London, New York

    Google Scholar 

  • Singer JB, Hill AE, Burrage LC et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    CAS  PubMed  Google Scholar 

  • Sobrizal K, Ikeda K, Sanchez PL et al (1996) Development of Oryza glumaepatula introgression lines in rice, O. sativa L. Rice Genet Newsl 16:107

    Google Scholar 

  • Steinhauser MC, Steinhauser D, Gibon Y et al (2011) Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum x Solanum pennellii introgression line population. Plant Physiol 157:998–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stelly DM, Saha S, Raska DA et al (2005) Registration of 17 Upland (Gossypium hirsutum) germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45:2663–2665

    Google Scholar 

  • Stevens R, Buret M, Duffé P et al (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens R, Page D, Gouble B et al (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    CAS  PubMed  Google Scholar 

  • Swamy BP, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120

    CAS  PubMed  Google Scholar 

  • Szalma SJ, Hostert BM, Ledeaux JR et al (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    CAS  PubMed  Google Scholar 

  • Tadmor Y, Fridman E, Gur A et al (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agric Food Chem 50:2005–2009

    CAS  PubMed  Google Scholar 

  • Tan L, Liu F, Xue W et al (2007) Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. Journal of Integrative Plant Biology 49:871–884

    CAS  Google Scholar 

  • Tan L, Zhang P, Liu F et al (2008) Quantitative trait loci underlying domestication- and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Genome 51:692–704

    CAS  PubMed  Google Scholar 

  • Tang J, Yan J, Ma X et al (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM et al (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Tian F, Li de J, Fu Q et al (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    CAS  PubMed  Google Scholar 

  • Tian L, Tan L, Liu F et al (2011) Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J Genet Genomics 38:593–601

    PubMed  Google Scholar 

  • Tieman DM, Zeigler M, Schmelz EA et al (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  • Törjék O, Meyer RC, Zehnsdorf M et al (2008) Construction and analysis of 2 reciprocal Arabidopsis introgression line populations. J Hered 99:396–406

    PubMed  Google Scholar 

  • Toubiana D, Semel Y, Tohge T et al (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet 8:e1002612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripodi P, Di Dato F, Maurer S et al (2010) A genetic platform of tomato multi-species introgression lines: present and future. In: Proceedings of the 7th Solanaceae Conference, Dundee, 5-9 September 2010, pp 166

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T et al (2006) A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  Google Scholar 

  • Uozumi A, Ikeda H, Hiraga M et al (2012) Tolerance to salt stress and blossom-end rot in an introgression line, IL8-3, of tomato. Sci Hortic 138:1–6

    CAS  Google Scholar 

  • Van der Hoeven RS, Monforte AJ, Breeden D et al (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294

    Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Google Scholar 

  • Van Schalkwyk A, Wenzl P, Smit S et al (2012) Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines. Theor Appl Genet 124:947–56

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotech 24:490–499

    CAS  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv. 2013 Jan 11. doi:pii: S0734-9750(13)00003-7. 10.1016/j.biotechadv.2013.01.001

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet. 109:1736–1745

    CAS  PubMed  Google Scholar 

  • Wang G, Schmalenbach I, von Korff M et al (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–74

    PubMed Central  PubMed  Google Scholar 

  • Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryzae as determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581

    CAS  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D et al (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Grandillo S et al (1996) Genes from wild rice improve yield. Scientific Correspondence, Nature 384:223–224

    CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S et al (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Xu X, Martin B, Comstock JP et al (2008) Fine mapping a QTL for carbon isotope composition in tomato. Theor Appl Genet 117:221–233

    CAS  PubMed  Google Scholar 

  • Xu J, Zhao Q, Du P et al (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 11:656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yates HE, Frary A, Doganlar S et al (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

    CAS  Google Scholar 

  • Yu J, Zhang K, Li S et al (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    PubMed  Google Scholar 

  • Zamir D, Eshed Y (1998) Tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, FL, pp 207–217

    Google Scholar 

  • Zhao L, Zhou H, Lu L et al (2009) Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep 28:247–256

    PubMed  Google Scholar 

  • Zong G, Wang A, Wang L et al (2012) A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genomics 39:335–350

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks all the colleagues who provided unpublished information and apologizes to those authors whose work could not be quoted due to space limitations. Research in the laboratory of S. Grandillo was supported in part by the EUSOL project PL 016214–2, by the Italian the Italian Ministry of University and Research (MIUR) project GenoPOM, by a dedicated grant from the Italian Ministry of Economy and Finance to the National Research Council for the project “Innovazione e Sviluppo del Mezzogiorno—Conoscenze Integrate per Sostenibilità ed Innovazione del Made in Italy Agroalimentare—Legge n. 191/2009”, and by the PON R&C 2007–2013 grant financed by the Italian MIUR in cooperation with the European Funds for the Regional Development (FESR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Grandillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grandillo, S. (2014). Introgression Libraries with Wild Relatives of Crops. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_4

Download citation

Publish with us

Policies and ethics