Skip to main content

Next Generation Sequencing and Germplasm Resources

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

DNA sequencing technology is advancing at an astounding rate, with rapid increases in data volumes and quality combined with reducing costs. The availability of this technology opens novel avenues for the analysis of plant germplasm resources. Where previous studies analysed a limited number of phenotypic or molecular genetic markers, it is now possible to re-sequence whole genomes to characterise diversity at a resolution of each nucleotide. Current approaches combine high resolution genetic markers with genome sequencing both for reference assembly and genotyping by sequencing. As next generation sequencing technologies continue to advance, we approach the potential to catalogue and characterise all genome variations across diverse germplasm to gain a greater understanding of how the genome contributes to the diversity seen in today’s plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen AM, Barker GLA, Berry ST et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotech J 9:1086–1099

    CAS  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 19–40

    Google Scholar 

  • Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    CAS  PubMed  Google Scholar 

  • Azam S, Thakur V, Ruperao P et al (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    CAS  PubMed  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plnat J 51:910–918

    CAS  Google Scholar 

  • Barker G, Batley J, O’Sullivan H et al (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    CAS  PubMed  Google Scholar 

  • Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batley J, Barker G, O’Sullivan H et al (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association Mapping in Plants. Springer, New York, pp 95–102

    Google Scholar 

  • Batley J, Edwards D (2009a) Genome sequence data: management, storage, and visualization. Biotechniques 46:333–336

    CAS  Google Scholar 

  • Batley J, Edwards D (2009b) Mining for Single Nucleotide Polymorphism (SNP) and Simple Sequence Repeat (SSR) molecular genetic markers. In: Posada D (ed) Bioinformatics for DNA Sequence Analysis. Humana Press (USA), pp 303–322

    Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT et al (2011a) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT et al (2011b) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    CAS  Google Scholar 

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012a) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Manoli S et al (2012b) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    CAS  Google Scholar 

  • Berkman PJ, Visendi P, Lee HC et al (2013) Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol J

    Google Scholar 

  • Bertioli DJ, Moretzsohn MC, Madsen LH et al (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45

    PubMed Central  PubMed  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    CAS  PubMed  Google Scholar 

  • Börner AB, Schumann ES, Fürste AF et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    PubMed  Google Scholar 

  • Breen J, Wicker T, Kong X et al (2010) A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. Bmc Plant Biol 10:98

    PubMed Central  PubMed  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56

    CAS  PubMed  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 103:14959–14964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter A, Garland-Campbell K, Morris C, Kidwell K (2012) Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor Appl Genet 124:1079–1096

    CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Consortium TTG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  • Cuesta–Marcos A, Szucs P, Close TJ et al (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics 11:707

    PubMed Central  PubMed  Google Scholar 

  • Darracq A, Varre JS, Touzet P (2010) A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics 11:233

    PubMed Central  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Bartos J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91

    CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  PubMed  Google Scholar 

  • Dong CH, Li C, Yan XH et al (2011) Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing. Mol Biol Rep 39:5851–7

    PubMed  Google Scholar 

  • Duran C, Appleby N, Clark T et al (2009a) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–953

    Google Scholar 

  • Duran C, Appleby N, Edwards D, Batley J (2009b) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27

    CAS  Google Scholar 

  • Duran C, Appleby N, Vardy M et al (2009c) Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol J 7:326–333

    CAS  Google Scholar 

  • Duran C, Edwards D, Batley J (2009d) Genetic maps and the use of synteny. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 41–56

    Google Scholar 

  • Duran C, Eales D, Marshall D et al (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023

    CAS  PubMed  Google Scholar 

  • Duran C, Singhania R, Raman H et al (2013) Predicting polymorphic EST-SSRs in silico. Mol Ecol Resour 13:538–45

    Google Scholar 

  • Edwards D, Forster JW, Chagné D, Batley J (2007a) What are SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association Mapping in Plants Springer NY, pp 41–52

    Google Scholar 

  • Edwards D, Forster JW, Cogan NOI et al (2007b) Single Nucleotide Polymorphism Discovery. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association Mapping in Plants. Springer New York, pp 53–76

    Google Scholar 

  • Edwards D, Hansen D, Stajich J (2009) DNA Sequence Databases. In: Edwards D, Hanson D, Stajich J (eds) Applied Bioinformatics. Springer (USA), pp 1–11

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 7:1–8

    Google Scholar 

  • Edwards D, Wang X (2012) Genome Sequencing Initiatives. In: Edwards D, Parkin IAP, Batley J (eds) Genetics, Genomics and Breeding of Oilseed Brassicas. Science Publishers Inc., New Hampshire, (USA), pp 152–157

    Google Scholar 

  • Edwards D, Wilcox S, Barrero RA et al (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10:703–708

    CAS  PubMed  Google Scholar 

  • Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    CAS  PubMed  Google Scholar 

  • George J, Sawbridge TI, Cogan NO et al (2008) Comparison of genome structure between white clover and Medicago truncatula supports homoeologous group nomenclature based on conserved synteny. Genome 51:905–911

    CAS  PubMed  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM et al (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096

    PubMed Central  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002a) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Sci 296:92–100

    CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002b) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Sci 296:92–100

    CAS  Google Scholar 

  • Grover CE, Salmon A, Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis1. Am J Bot 99:312–319

    PubMed  Google Scholar 

  • Gu YQ, Ma Y, Huo N et al (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 10:496

    PubMed Central  PubMed  Google Scholar 

  • Hall BG, Ehrlich GD, Hu FZ (2010) Pan-genome analysis provides much higher strain typing resolution than multi-locus sequence typing. Microbiol 156:1060–1068

    CAS  Google Scholar 

  • Hao C, Perretant M, Choulet F et al (2010) Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Theor Appl Genet 121:1209–1225

    CAS  PubMed  Google Scholar 

  • Hao Z, Li X, Xie C et al (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J integrat plant biol 53:641–652

    Google Scholar 

  • Hayward A, Dalton-Morgan J, Mason A et al (2012a) SNP discovery and applications in Brassica napus. J Plant Biotechnol (in press)

    Google Scholar 

  • Hayward A, Vighnesh G, Delay C et al (2012b) Second-generation sequencing for gene discovery in the Brassicaceae. Plant Biotechnol J 10:750–759

    CAS  Google Scholar 

  • Henry R, Edwards K (2009) New tools for single nucleotide polymorphism (SNP) discovery and analysis accelerating plant biotechnology. Plant Biotechnol J 7:311

    PubMed  Google Scholar 

  • Hernandez P, Martis M, Dorado G et al (2011) NGS and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    PubMed  Google Scholar 

  • Horvath A, Didier A, Koenig J et al (2009) Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor Appl Genet 119:1523–1537

    CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    PubMed Central  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Huang XH, Wei XH, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–976

    CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Zhu Y et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103:16666–16671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    CAS  PubMed  Google Scholar 

  • Imelfort M, Batley J, Grimmond S, Edwards D (2009a) Genome sequencing approaches and successes. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 345–358

    Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009b) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317

    CAS  Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Janda J, Bartos J, Safar J et al (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    CAS  PubMed  Google Scholar 

  • Jiang Q, Yen SH, Stiller J et al (2012) Diversity Analysis of the Tree Legume Pongamia pinnata using PISSRs (Pongamia Inter-Simple Sequence Repeats). J Plant Genome Sci (in press)

    Google Scholar 

  • Kazakoff SH, Imelfort M, Edwards D et al (2012) Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata. Plos One 7:51687

    Google Scholar 

  • Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 12:231

    PubMed Central  PubMed  Google Scholar 

  • Kircher M, Heyn P, Kelso J (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics 12:382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J et al (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    PubMed  Google Scholar 

  • Lai JS, Li RQ, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1158

    CAS  PubMed  Google Scholar 

  • Lai K, Berkman PJ, Lorenc MT et al (2012a) WheatGenome.info: An integrated database and portal for wheat genome information. Plant Cell Physiol 53:1–7

    Google Scholar 

  • Lai K, Duran C, Berkman PJ et al (2012b) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 10:743–749

    CAS  Google Scholar 

  • Lai K, Lorenc MT, Edwards D (2012c) Genomic databases for crop improvement. Agronomy 2:62–73

    Google Scholar 

  • Laing C, Buchanan C, Taboada EN et al (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 11:461

    PubMed Central  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1041

    CAS  PubMed  Google Scholar 

  • Lee GA, Crawford GW, Liu L et al (2011a) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One 6:26720

    Google Scholar 

  • Lee H, Lai K, Lorenc MT et al (2011b) Bioinformatics tools and databases for analysis of next generation sequence data. Briefings in Functional Genomics (in press)

    Google Scholar 

  • Lee H, Lai K, Lorenc MT et al (2012) Bioinformatics tools and databases for analysis of next generation sequence data. Brief Funct Genomics 2:12–24

    Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li R, Li Y, Zheng H et al (2010a) Building the sequence map of the human pan-genome. Nat Biotechnol 28:57–63

    CAS  Google Scholar 

  • Li YH, Li W, Zhang C et al (2010b) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. The New phytologist 188:242–253

    CAS  Google Scholar 

  • Lieberman KR, Cherf GM, Doody MJ et al (2010) Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc 132:17961–17972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lodhi MA, Daly MJ, Ye GN et al (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794

    CAS  PubMed  Google Scholar 

  • Lorenc MT, Hayashi S, Stiller J et al (2012) Discovery of Single Nucleotide Polymorphisms in Complex Genomes Using SGSautoSNP. Biology 1:370–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall D, Hayward A, Eales D et al (2010) Targeted identification of genomic regions using db. Plant Methods 6:19

    PubMed Central  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal Genome Evolution – Grasses, Line up and Form a Circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Mun J-H, Kwon S-J, Seol Y-J et al (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:94

    Google Scholar 

  • Nie X, Li B, Wang L et al (2012) Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot 99:369–371

    Google Scholar 

  • Orrù L, Catillo G, Napolitano F et al (2009) Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control 20:856–860

    Google Scholar 

  • Pang X, Luo H, Sun C (2012) Assessing the potential of candidate DNA barcodes for identifying non-flowering seed plants. Plant Biol 14:839–844

    CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Paux E, Roger D, Badaeva E et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    CAS  PubMed  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Safar J, Bartos J, Janda J et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    CAS  PubMed  Google Scholar 

  • Šafář J, Šimková H, Kubalákoá M et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC et al (2009) Detailed Recombination Studies Along Chromosome 3B Provide New Insights on Crossover Distribution in Wheat (Triticum aestivum L.). Genetics 181:393–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381

    CAS  PubMed Central  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A et al (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlueter JA, Scheffler BE, Jackson S, Shoemaker RC (2008) Fractionation of synteny in a genomic region containing tandemly duplicated genes across glycine max, Medicago truncatula, and Arabidopsis thaliana. J Hered 99:390–395

    CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010a) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010b) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Seeb JE, Carvalho G, Hauser L et al (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11(1):1–8

    PubMed  Google Scholar 

  • Shibata D (2005) Genome sequencing and functional genomics approaches in tomato. J Gen Plant Pathol 71:1–7

    CAS  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Springer NM, Ying K, Fu Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    PubMed Central  PubMed  Google Scholar 

  • Syvanen AC (2001) Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    CAS  PubMed  Google Scholar 

  • Tetz VV (2005) The pangenome concept: a unifying view of genetic information. Med Sci Monitor 11:HY24–29

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tuskan GA, DiFazio SP, Teichmann T (2004) Poplar genomics is getting popular: The impact of the poplar genome project on tree research. Plant Biol 6:2–4

    CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of kabuli chickpea (Cicer arietinum): genetic structure and breeding constraints for crop improvement. Nat Biotechnol

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    PubMed Central  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    CAS  PubMed  Google Scholar 

  • Vielle-Calzada JP, Martinez delaVO, Hernandez-Guzman G et al (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078

    CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1157

    CAS  PubMed  Google Scholar 

  • Williams-Carrier R, Stiffler N, Belcher S et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177

    CAS  PubMed  Google Scholar 

  • Wu DD, Zhang YP (2011) Eukaryotic origin of a metabolic pathway in virus by horizontal gene transfer. Genomics 98:367–369

    CAS  PubMed  Google Scholar 

  • Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80

    PubMed Central  PubMed  Google Scholar 

  • Xu JH, Bennetzen JL, Messing J (2011a) Dynamic Gene Copy Number Variation in Collinear Regions of Grass Genomes. Mol Biol Evol

    Google Scholar 

  • Xu X, Pan S, Cheng S et al (2011b) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    CAS  Google Scholar 

  • Xu X, Pan S, Cheng S et al (2011c) Genome sequence and analysis of the tuber crop potato. Nature 475:189–194

    CAS  Google Scholar 

  • Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    CAS  Google Scholar 

  • Young ND, Debelle F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature advance online publication

    Google Scholar 

  • Yu J, Hu SN, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yue WF, Du M, Zhu MJ (2012) High Temperature in Combination with UV Irradiation Enhances Horizontal Transfer of stx2 Gene from E. coli O157:H7 to Non-Pathogenic E. coli. PLoS One 7:e31308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Belcram H, Gornicki P et al (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci U S A 108:18737–18742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zharkikh A, Troggio M, Pruss D et al (2008) Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions. J Biotechnol 136:38–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Visendi, P., Batley, J., Edwards, D. (2014). Next Generation Sequencing and Germplasm Resources. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_15

Download citation

Publish with us

Policies and ethics