Skip to main content

Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

  • Chapter
  • First Online:
G Protein-Coupled Receptors - Modeling and Simulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 796))

Abstract

The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci USA 101:117–122

    CAS  PubMed  Google Scholar 

  • Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA 105:7439–7444

    CAS  PubMed  Google Scholar 

  • Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y et al (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703

    CAS  PubMed  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Sealfon SC, Conn PM (eds) Methods in neurosciences, vol 25. Academic, San Diego, pp 366–428

    Google Scholar 

  • Barak LS, Ferguson SSG, Zhang J, Martenson C, Meyer T, Caron MG (1997) Internal trafficking and surface mobility of a functionally intact beta(2)-adrenergic receptor-green fluorescent protein conjugate. Mol Pharmacol 51:177–184

    CAS  PubMed  Google Scholar 

  • Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    PubMed  Google Scholar 

  • Befort K, Tabbara L, Bausch S, Chavkin C, Evans C, Kieffer B (1996a) The conserved aspartate residue in the third putative transmembrane domain of the delta-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol Pharmacol 49:216–223

    CAS  PubMed  Google Scholar 

  • Befort K, Tabbara L, Kling D, Maigret B, Kieffer BL (1996b) Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition. J Biol Chem 271:10161–10168

    CAS  PubMed  Google Scholar 

  • Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    CAS  Google Scholar 

  • Bot G, Blake AD, Li SX, Reisine T (1998) Mutagenesis of a single amino acid in the rat mu-opioid receptor discriminates ligand binding. J Neurochem 70:358–365

    CAS  PubMed  Google Scholar 

  • Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis KL, Kolossváry I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, 11–17 November 2006

    Google Scholar 

  • Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:054103

    PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  • Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, Giles H, Shardonofsky FR, Bond RA (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 101:4948–4953

    CAS  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK et al (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318:1258–1265

    CAS  PubMed  Google Scholar 

  • Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    CAS  PubMed  Google Scholar 

  • Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK et al (2006) In: Scalable algorithms for molecular dynamics simulation on commodity clusters

    Google Scholar 

  • Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda) 25:293–303

    CAS  Google Scholar 

  • Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci USA 109:119–124

    CAS  PubMed  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108:13118–13123

    CAS  PubMed  Google Scholar 

  • Elster L, Elling C, Heding A (2007) Bioluminescence resonance energy transfer as a screening assay: focus on partial and inverse agonism. J Biomol Screen 12:41–49

    CAS  PubMed  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci, Chapter 2:Unit 2 9

    Google Scholar 

  • Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. In Macromolecular crystallography, Pt D. Method Enzymol 374: 461-+

    Google Scholar 

  • Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R (2009) Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J Phys Chem B 113:13018–13025

    CAS  PubMed  Google Scholar 

  • Fonseca JM, Lambert NA (2009) Instability of a class A G protein-coupled receptor oligomer interface. Mol Pharmacol 75:1296–1299

    CAS  PubMed  Google Scholar 

  • Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    CAS  PubMed  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    CAS  PubMed  Google Scholar 

  • Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023

    CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, KlicicJJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    CAS  PubMed  Google Scholar 

  • Golebiewska U, Johnston JM, Devi L, Filizola M, Scarlata S (2011) Differential response to morphine of the oligomeric state of mu-opioid in the presence of delta-opioid receptors. Biochemistry 50:2829–2837

    CAS  PubMed  Google Scholar 

  • Gonzalez A, Perez-Acle T, Pardo L, Deupi X (2011) Molecular basis of ligand dissociation in beta-adrenergic receptors. PLoS One 6:e23815

    CAS  PubMed  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    CAS  PubMed  Google Scholar 

  • Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K (2008) Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J Mol Biol 381:478–486

    CAS  PubMed  Google Scholar 

  • Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 102:17495–17500

    CAS  PubMed  Google Scholar 

  • Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304

    CAS  PubMed  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    CAS  PubMed  Google Scholar 

  • Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H (2004) Dynamics of beta(2)-adrenergic receptor – ligand complexes on living cells. Biochemistry 43:6190–6199

    CAS  PubMed  Google Scholar 

  • Henis YI, Hekman M, Elson EL, Helmreich EJM (1982) Lateral motion of beta-receptors in membranes of cultured liver-cells. Proc Natl Acad Sci USA 79:2907–2911

    CAS  PubMed  Google Scholar 

  • Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M-1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698

    CAS  PubMed  Google Scholar 

  • Hildebrand PW, Scheerer P, Park JH, Choe HW, Piechnick R, Ernst OP, Hofmann KP, Heck M (2009) A ligand channel through the G protein coupled receptor opsin. PLoS One 4:e4382

    PubMed  Google Scholar 

  • Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973–3985

    CAS  PubMed  Google Scholar 

  • Hopkinson HE, Latif ML, Hill SJ (2000) Non-competitive antagonism of beta(2)-agonist-mediated cyclic AMP accumulation by ICI 118551 in BC3H1 cells endogenously expressing constitutively active beta(2)-adrenoceptors. Br J Pharmacol 131:124–130

    CAS  PubMed  Google Scholar 

  • Huber T, Sakmar TP (2011) Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci 32:410–419

    CAS  PubMed  Google Scholar 

  • Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K, Pitman MC, Reggio PH (2010) A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 285:17954–17964

    CAS  PubMed  Google Scholar 

  • Im WP, Lee MS, Brooks CL (2003) Generalized born model with a simple smoothing function. J Comput Chem 24:1691–1702

    CAS  PubMed  Google Scholar 

  • Im W, Feig M, Brooks CL (2004) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins (vol 85, pg 2900, 2003). Biophys J 86:3330–3330

    Google Scholar 

  • Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    CAS  PubMed  Google Scholar 

  • Isberg V, Balle T, Sander T, Jorgensen FS, Gloriam DE (2011) G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations. J Chem Inf Model 51:315–325

    CAS  PubMed  Google Scholar 

  • Isralewitz B, Izrailev S, Schulten K (1997) Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J 73:2972–2979

    CAS  PubMed  Google Scholar 

  • Jensen MO, Park S, Tajkhorshid E, Schulten K (2002) Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci USA 99:6731–6736

    CAS  PubMed  Google Scholar 

  • Johnston JM, Aburi M, Provasi D, Bortolato A, Urizar E, Lambert NA, Javitch JA, Filizola M (2011) Making structural sense of dimerization interfaces of delta opioid receptor homodimers. Biochemistry 50:1682–1690

    CAS  PubMed  Google Scholar 

  • Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comput Biol 8:e1002649

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure – pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    CAS  Google Scholar 

  • Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    CAS  PubMed  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    PubMed  Google Scholar 

  • Kimura SR, Tebben AJ, Langley DR (2008) Expanding GPCR homology model binding sites via a balloon potential: a molecular dynamics refinement approach. Proteins 71:1919–1929

    CAS  PubMed  Google Scholar 

  • Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    CAS  Google Scholar 

  • Knepp AM, Periole X, Marrink SJ, Sakmar TP, Huber T (2012) Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51:1819–1821

    CAS  PubMed  Google Scholar 

  • Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci USA 104: 20290–20295

    CAS  PubMed  Google Scholar 

  • Krystek SR Jr, Kimura SR, Tebben AJ (2006) Modeling and active site refinement for G protein-coupled receptors: application to the beta-2 adrenergic receptor. J Comput Aided Mol Des 20:463–470

    CAS  PubMed  Google Scholar 

  • Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules.1. The method. J Comput Chem 13:1011–1021

    CAS  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350

    CAS  Google Scholar 

  • Kusumi A, Hyde JS (1982) Spin-label saturation-transfer electron-spin resonance detection of transient association of rhodopsin in reconstituted membranes. Biochemistry 21:5978–5983

    CAS  PubMed  Google Scholar 

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    CAS  PubMed  Google Scholar 

  • Lambert NA (2010) Gpcr dimers fall apart. Sci Signal 3:pe12

    PubMed  Google Scholar 

  • Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379:311–319

    CAS  PubMed  Google Scholar 

  • Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    CAS  PubMed  Google Scholar 

  • Leone V, Marinelli F, Carloni P, Parrinello M (2010) Targeting biomolecular flexibility with metadynamics. Curr Opin Struct Biol 20:148–154

    CAS  PubMed  Google Scholar 

  • Li JG, Chen CG, Yin JL, Rice K, Zhang Y, Matecka D, de Riel JK, DesJarlais RL, Liu-Chen LY (1999) Asp147 in the third transmembrane helix of the rat mu opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci 65:175–185

    CAS  PubMed  Google Scholar 

  • Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theor Comput 5:3195–3210

    CAS  Google Scholar 

  • Ludemann SK, Lounnas V, Wade RC (2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303:797–811

    CAS  PubMed  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    CAS  PubMed  Google Scholar 

  • Mansour A, Taylor LP, Fine JL, Thompson RC, Hoversten MT, Mosberg HI, Watson SJ, Akil H (1997) Key residues defining the mu-opioid receptor binding pocket: a site-directed mutagenesis study. J Neurochem 68:344–353

    CAS  PubMed  Google Scholar 

  • Marchi M, Ballone P (1999) Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J Chem Phys 110:3697–3702

    CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    CAS  PubMed  Google Scholar 

  • Marrink SJ, Fuhrmans M, Risselada HJ, Periole X (2008) The MARTINI forcefield. In: Voth G (ed) Coarse graining of condensed phase and biomolecular systems. CRC Press, Boca Raton

    Google Scholar 

  • Marrink SJ, Periole X, Tieleman DP, de Vries AH (2009) Comment on “On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models” by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren, Phys Chem Chem Phys 11:1934. Phys Chem Chem Phys 12:2254–2256; author reply 2257–2258

    Google Scholar 

  • Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14

    CAS  PubMed  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theor Comput 4:819–834

    CAS  Google Scholar 

  • Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    CAS  PubMed  Google Scholar 

  • Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography. Proc Natl Acad Sci USA 99: 5982–5987

    CAS  PubMed  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Angstrom crystal structure. J Mol Biol 342:571–583

    CAS  PubMed  Google Scholar 

  • Olausson BE, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A (2012) Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. J Am Chem Soc 134:4324–4331

    CAS  PubMed  Google Scholar 

  • Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961

    CAS  PubMed  Google Scholar 

  • Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559

    CAS  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    CAS  PubMed  Google Scholar 

  • Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132

    CAS  PubMed  Google Scholar 

  • Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theor Comput 5:2531–2543

    CAS  Google Scholar 

  • Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965

    CAS  PubMed  Google Scholar 

  • Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7:316

    PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  Google Scholar 

  • Poo MM, Cone RA (1973) Lateral diffusion of rhodopsin in the visual receptor membrane. J Supramol Struct 1:354

    CAS  PubMed  Google Scholar 

  • Provasi D, Filizola M (2010) Putative active states of a prototypic G-protein-coupled receptor from biased molecular dynamics. Biophys J 98:2347–2355

    CAS  PubMed  Google Scholar 

  • Provasi D, Bortolato A, Filizola M (2009) Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics. Biochemistry 48:10020–10029

    CAS  PubMed  Google Scholar 

  • Provasi D, Johnston JM, Filizola M (2010) Lessons from free energy simulations of delta-opioid receptor homodimers involving the fourth transmembrane helix. Biochemistry 49:6771–6776

    CAS  PubMed  Google Scholar 

  • Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M (2011) Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques. PLoS Comput Biol 7:e1002193

    CAS  PubMed  Google Scholar 

  • Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110:3533–3539

    CAS  PubMed  Google Scholar 

  • Rasmussen SGF, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, Rosenbaum DM, Thian FS, Kobilka TS et al (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011b) Crystal structure of the beta2 adrenergicreceptor-Gs protein complex. Nature 477:549–555

    Google Scholar 

  • Rives ML, Rossillo M, Liu-Chen LY, Javitch JA (2012) 6′-Guanidinonaltrindole (6′-GNTI) is a G protein-based kappa-opioid receptor agonist that inhibits arrestin recruitment. J Biol Chem 287:27050–27054

    CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SGF, Choi HJ, DeVree BT, Sunahara RK et al (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240

    CAS  PubMed  Google Scholar 

  • Roux B (1995) The calculation of the potential of mean force using computer-simulations. Comput Phys Commun 91:275–282

    CAS  Google Scholar 

  • Roux B (1999) Statistical mechanical equilibrium theory of selective ion channels. Biophys J 77:139–153

    CAS  PubMed  Google Scholar 

  • Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J 23:3609–3620

    CAS  PubMed  Google Scholar 

  • Ryba NJP, Marsh D (1992) Protein rotational diffusion and lipid protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron-spin-resonance. Biochemistry 31:7511–7518

    CAS  PubMed  Google Scholar 

  • Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci USA 103:16123–16128

    CAS  PubMed  Google Scholar 

  • Sauliere-Nzeh AN, Millot C, Corbani M, Mazeres S, Lopez A, Salome L (2010) Agonist-selective dynamic compartmentalization of human Mu opioid receptor as revealed by resolutive FRAP analysis. J Biol Chem 285:14514–14520

    CAS  PubMed  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    CAS  PubMed  Google Scholar 

  • Schertler GF, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci USA 92:11578–11582

    CAS  PubMed  Google Scholar 

  • Schlitter J, Engels M, Kruger P (1994) Targeted molecular-dynamics – a New approach for searching pathways of conformational transitions. J Mol Graph 12:84–89

    CAS  PubMed  Google Scholar 

  • Selvam B, Wereszczynski J, Tikhonova IG (2012) Comparison of dynamics of extracellular accesses to the beta(1) and beta(2) adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity. Chem Biol Drug Des 80:215–226

    CAS  PubMed  Google Scholar 

  • Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989–40996

    CAS  PubMed  Google Scholar 

  • Shiota T (1999) Cyclic amine derivatives and their use as drugs. US Patent 1999

    Google Scholar 

  • Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    PubMed  Google Scholar 

  • Simpson LM, Wall ID, Blaney FE, Reynolds CA (2011) Modeling GPCR active state conformations: the beta(2)-adrenergic receptor. Proteins 79:1441–1457

    CAS  PubMed  Google Scholar 

  • Spivak CE, Beglan CL, Seidleck BK, Hirshbein LD, Blaschak CJ, Uhl GR, Surratt CK (1997) Naloxone activation of mu-opioid receptors mutated at a histidine residue lining the opioid binding cavity. Mol Pharmacol 52:983–992

    CAS  PubMed  Google Scholar 

  • Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RA (1988) Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem 263:10267–10271

    CAS  PubMed  Google Scholar 

  • Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA (1989) Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem 264:13572–13578

    CAS  PubMed  Google Scholar 

  • Surratt CK, Johnson PS, Moriwaki A, Seidleck BK, Blaschak CJ, Wang JB, Uhl GR (1994) Mu opiate receptor – charged transmembrane domain amino-acids are critical for agonist recognition and intrinsic activity. J Biol Chem 269:20548–20553

    CAS  PubMed  Google Scholar 

  • Taddese B, Simpson LM, Wall ID, Blaney FE, Kidley NJ, Clark HS, Smith RE, Upton GJ, Gouldson PR, Psaroudakis G et al (2012) G-protein-coupled receptor dynamics: dimerization and activation models compared with experiment. Biochem Soc Trans 40:394–399

    CAS  PubMed  Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916

    CAS  PubMed  Google Scholar 

  • Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–399

    CAS  PubMed  Google Scholar 

  • Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O’Brien A, White A et al (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr 178:440–466

    CAS  PubMed  Google Scholar 

  • Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using Non-Boltzmann sampling – application to subcritical Lennard-Jones fluid. Chem Phys Lett 28:578–581

    CAS  Google Scholar 

  • Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150

    CAS  PubMed  Google Scholar 

  • Tozzini V (2010) Multiscale modeling of proteins. Accounts Chem Res 43:220–230

    CAS  Google Scholar 

  • Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10:775–781

    CAS  PubMed  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Google Scholar 

  • Vogel R, Ruprecht J, Villa C, Mielke T, Schertler GF, Siebert F (2004) Rhodopsin photoproducts in 2D crystals. J Mol Biol 338:597–609

    CAS  PubMed  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058

    CAS  PubMed  Google Scholar 

  • Wang T, Duan Y (2007) Chromophore channeling in the G-protein coupled receptor rhodopsin. J Am Chem Soc 129:6970–6971

    CAS  PubMed  Google Scholar 

  • Wang T, Duan Y (2009) Ligand entry and exit pathways in the beta(2)-adrenergic receptor. J Mol Biol 392:1102–1115

    CAS  PubMed  Google Scholar 

  • Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373:503–519

    CAS  PubMed  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GFX (2008) Structure of a beta(1)-adrenergic G-protein-coupled receptor. Nature 454:486–491

    CAS  PubMed  Google Scholar 

  • Winger M, Trzesniak D, Baron R, van Gunsteren WF (2009) On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys Chem Chem Phys 11:1934–1941

    CAS  PubMed  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    CAS  PubMed  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    CAS  PubMed  Google Scholar 

  • Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY (2009) Steered molecular dynamics simulations revealthe likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS One 4:e8470

    Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work on GPCRs is currently supported by NIH grants DA026434 and DA034049. Their computations are run, in part, on resources available through the Scientific Computing Facility at Icahn School of Medicine at Mount Sinai, and in part on advanced computing resources provided by Texas Advanced Computing Center through MCB080077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Filizola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnston, J.M., Filizola, M. (2014). Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_6

Download citation

Publish with us

Policies and ethics