Skip to main content

Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin

  • Chapter
  • First Online:
G Protein-Coupled Receptors - Modeling and Simulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 796))

Abstract

Protein function is a complicated interplay between structure and dynamics, which can be heavily influenced by environmental factors and conditions. This is particularly true in the case of membrane proteins, such as the visual receptor rhodopsin. It has been well documented that lipid headgroups, polyunsaturated tails, and the concentration of cholesterol in membranes all play a role in the function of rhodopsin. Recently, we used all-atom simulations to demonstrate that different lipid species have preferential interactions and possible binding sites on rhodopsin’s surface, consistent with experiment. However, the limited timescales of the simulations meant that the statistical uncertainty of these results was substantial. Accordingly, we present here 32 independent 1.6 μs coarse-grained simulations exploring lipids and cholesterols surrounding rhodopsin and opsin, in lipid bilayers mimicking those found naturally. Our results agree with those found experimentally and in previous simulations, but with far better statistical certainty. The results demonstrate the value of combining all-atom and coarse-grained models with experiment to provide a well-rounded view of lipid-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert AD, Young JE, Yeagle P (1996) Rhodopsin-cholesterol interactions in bovine rod out segment disk membranes. Biochim Biophys Acta 1285:47–55

    Article  PubMed  Google Scholar 

  • Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane protein function: an energetic perspective. Ann Rev Biophys Biomol Struct 36:107–130. doi:10.1146/ annurev.biophys.36.040306.132643

    Google Scholar 

  • Andersen O, Apell HJ, Bamberg E, Busath D, Koeppe R, Sigworth F, Szabo G, Urry D, Woolley A (1999) Gramicidin channel controversy – the structure in a lipid environment. Nat Struct Mol Biol 6(7):609–609

    Article  CAS  Google Scholar 

  • Boesze-Battaglia K, Albert AD (1989) Fatty acid composition of bovine rod outer segment plasma membrane. Exp Eye Res 49(4):699–701

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Albert AD (1992) Phospholipid distribution among bovine rod outer segment plasma membrane and disk membranes. Exp Eye Res 54(5):821–823

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Hennessey T, Albert AD (1989) Cholesterol heterogeneity in bovine rod outer segment disk membranes. J Biol Chem 264(14):8151–8155

    PubMed  CAS  Google Scholar 

  • Botelho AV, Gibson NJ, Thurmond RJ, Wang Y, Brown MF (2002) Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41:6354–6368

    Article  PubMed  CAS  Google Scholar 

  • Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477

    Article  PubMed  CAS  Google Scholar 

  • Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73(1–2):159–180

    Article  PubMed  CAS  Google Scholar 

  • Brown MF (1997) Influence of non-lamellar-forming lipids on rhodopsin. Curr Top Membr 44:285–356

    Article  CAS  Google Scholar 

  • Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci 94(6):2339–2344

    Article  PubMed  Google Scholar 

  • Burkhart BM, Li N, Langs DA, Pangborn WA, Duax WL (1998) The conducting form of gramicidin a is a right-handed double-stranded double helix. Proc Natl Acad Sci 95(22):12950–12955. doi:10.1073/pnas.95.22.12950

    Article  PubMed  CAS  Google Scholar 

  • Buzhynskyy N, Salesse C, Scheuring S (2011) Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. J Mol Recognit 24(3):483–489. doi:10.1002/jmr.1086

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Rand R (1997) The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J 73(1):267–276. doi:10.1016/S0006-3495(97)78067-6

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. doi:10.1126/science.1150577

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank C, Minchin R, Dain AL, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73(4):1925–1931. doi:10.1016/S0006-3495(97)78223-7

    Article  PubMed  CAS  Google Scholar 

  • Delange F, Merkx M, Bovee-Geurts PHM, Pistorius AMA, Degrip WJ (1997) Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength. Eur J Biochem 243(1–2):174–180. doi:10.1111/j.1432-1033.1997.0174a.x

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580. doi:10.1038/nature04394

    Article  PubMed  CAS  Google Scholar 

  • Fattal DR, Ben-Shaul A (1993) A molecular model for lipid-protein interactions in membranes: the role of hydrophobic mismatch. Biophys J 65:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Feller SE, Gawrisch K (2005) Properties of docosahexaenoic acid-containing lipids and their influence on the function of the GPCR rhodopsin. Curr Opin Struct Biol 15:416–422

    Article  PubMed  CAS  Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD Jr (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124(2):318–326

    Article  PubMed  CAS  Google Scholar 

  • Feller SE, Gawrisch K, Woolf TB (2003) Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. J Am Chem Soc 125(15):4434–4435. doi:10. 1021/ja0345874

    Google Scholar 

  • Gibson NJ, Brown MF (1993) Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454

    Article  PubMed  CAS  Google Scholar 

  • Grossfield A, Feller SE, Pitman MC (2006a) Contribution of omega-3 fatty acids to the thermodynamics of membrane protein solvation. J Phys Chem B 110(18):8907–8909. doi:10.1021/jp060405r

    Article  PubMed  CAS  Google Scholar 

  • Grossfield A, Feller SE, Pitman MC (2006b) A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci USA 103(13):4888–4893. doi:10.1073/pnas.0508352103

    Article  PubMed  CAS  Google Scholar 

  • Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K (2008) Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J Mol Biol 381(2):478–486. doi:10.1016/j.jmb.2008.05.036

    Article  PubMed  CAS  Google Scholar 

  • Gruner SM (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci 82(11):3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 angstrom structure of the human beta2-adrenergic receptor. Structure 16(6):897–905. doi:10.1016/j.str.2008.05.001

    Article  PubMed  CAS  Google Scholar 

  • Harold FM, Baarda JR (1967) Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis. J Bacteriol 94(1):53–60

    PubMed  CAS  Google Scholar 

  • Haswell E, Phillips R, Rees D (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369. doi:10.1016/j.str.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697. doi:10.1103/PhysRevA.31.1695

    Article  PubMed  Google Scholar 

  • Huber T, Rajamoorthi K, Kurze VF, Beyer K, Brown MF (2002) Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulation. J Am Chem Soc 124:298–309

    Article  PubMed  CAS  Google Scholar 

  • Huber T, Botelho AV, Beyer K, Brown MF (2004) Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J 86:2078–2100

    Article  PubMed  CAS  Google Scholar 

  • Jones E, Oliphant T, Peterson P, et al (2001–) SciPy: open source scientific tools for Python. http://www.scipy.org/

  • Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4):475–488. doi:10.1016/j.ymeth.2006. 08.006

    Article  PubMed  CAS  Google Scholar 

  • Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H (2009) Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Proteins 76(2):403–417. doi:10.1002/prot.22355

    Article  PubMed  CAS  Google Scholar 

  • Killian J, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25(9):429–434. doi:10.1016/S0968-0004(00)01626-1

    Article  PubMed  CAS  Google Scholar 

  • Knepp AM, Periole X, Marrink SJ, Sakmar TP, Huber T (2012) Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51(9):1819–1821. doi:10.1021/bi3001598

    Article  PubMed  CAS  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Ann Rev Microbiol 64(1):313–329. doi:10.1146/annurev.micro.112408.134106

    Article  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochimica et Biophysica Acta (BBA) – Biomembranes 1612(1):1–40. doi:10.1016/ S0005-2736(03)00056-7

    Article  CAS  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta (BBA) – Biomembranes 1666(1–2):62–87. doi:10.1016/j.bbamem. 2004.05.012

    Article  CAS  Google Scholar 

  • Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A(2A) adenosine receptor. J Am Chem Soc 134(40):16512–16515. doi:10.1021/ja307532d

    Article  PubMed  CAS  Google Scholar 

  • Liebman PA, Parker KR, Dratz EA (1987) The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Ann Rev Physiol 49(1):765–791. doi:10.1146/annurev.ph.49.030187.004001

    Article  CAS  Google Scholar 

  • Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232–236. doi:10.1126/ science.1219218

    Google Scholar 

  • Lyman E, Higgs C, Kim B, Lupyan D, Shelley JC, Farid R, Voth GA (2009) A role for a specific cholesterol interaction in stabilizing the apo configuration of the human A(2A) adenosine receptor. Structure 17(12):1660–1668. doi:10.1016/j.str.2009.10.010

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. doi:10.1021/jp071097f

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, Periole X, Tieleman DP, de Vries AH (2010) Comment on “on using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models” by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren, Phys. Chem. Chem. Phys., 2009, 11, 1934. Phys Chem Chem Phys 12(9):2254–2256; author reply 2257–2258. doi:10.1039/b915293h

    Google Scholar 

  • Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes 1778:1545–1575. doi:10.1016/j.bbamem.2008. 01.015

    Google Scholar 

  • Martinac B (2011) Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction. Cell Physiol Biochem 28(6):1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci 84(8):2297–2301

    Article  PubMed  CAS  Google Scholar 

  • MARTINI (2011) http://mdchemrugnl/cgmartini/

  • Mitchell DC, Straume M, Miller JL, Litman BJ (1990) Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29(39):9143–9149. doi:10.1021/bi00491a007

    Article  PubMed  CAS  Google Scholar 

  • Molday RS (1998) Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 39(13):2491–2513

    CAS  Google Scholar 

  • Monticelli L, Kandasamy S, Periole X, Larson R, Tieleman D, Marrink S (2008) The MARTINI coarse grained forcefield: extension to proteins. J Chem Theory Comput 4:819–839

    Article  CAS  Google Scholar 

  • Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen OG, Bloom M (1993) Models of lipid-protein interactions in membranes. Ann Rev Biophys Biomol Struct 22:145–171

    Article  CAS  Google Scholar 

  • Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27(13):4668–4673. doi:10.1021/bi00413a013

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M (2000) Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications. Am J Clin Nutr 71(1 Suppl):256S–267S

    PubMed  CAS  Google Scholar 

  • Niu SL, Mitchell DC, Litman BJ (2002) Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin. J Bio Chem 277:20139–20145

    Article  CAS  Google Scholar 

  • Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  • O’Connell A, Koeppe R, Andersen O (1990) Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science 250(4985):1256–1259. doi:10.1126/science.1700867

    Article  PubMed  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J Mol Biol 342:571–583

    Article  PubMed  CAS  Google Scholar 

  • Olausson BES, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A (2012) Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. J Am Chem Soc 134(9):4324–4331. doi:10.1021/ja2108382

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BJ, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454(7201):183–187. doi:10.1038/ nature07063

    Article  PubMed  CAS  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. doi:10.1063/1.328693

    Article  CAS  Google Scholar 

  • Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129(33):10126–10132. doi:10.1021/ja0706246

    Article  PubMed  CAS  Google Scholar 

  • Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5(9):2531–2543. doi:10.1021/ct9002114

    Article  CAS  Google Scholar 

  • Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134(26):10959–10965. doi:10.1021/ja303286e

    Article  PubMed  CAS  Google Scholar 

  • Pitman MC, Grossfield A, Suits F, Feller SE (2005) Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc 127(13):4576–4577. doi:10.1021/ ja042715y

    Article  PubMed  CAS  Google Scholar 

  • Romo TD, Grossfield A (2009) LOOS: an extensible platform for the structural analysis of simulations. Conf Proc IEEE Eng Med Biol Soc 2009:2332–2335. doi:10.1109/IEMBS. 2009.5335065

    PubMed  Google Scholar 

  • Romo TD, Grossfield A (2012) LOOS: a lightweight object-oriented software library. LOOS: Lightweight object oriented structure analysis, Grossfield Lab. http://loos.sourceforge.net

  • Sansom MS, Bond PJ, Deol SS, Grottesi A, Haider S, Sands ZA (2005) Molecular simulations and lipid-protein interactions: potassium channels and other membrane proteins. Biochem Soc Trans 33(Pt 5):916–920. doi:10.1042/BST20050916

    PubMed  CAS  Google Scholar 

  • Simmonds A, East J, Jones O, Rooney E, McWhirter J, Lee A (1982) Annular and non-annular binding sites on the (Ca\({}^{2++}\) Mg2+)-ATPase. Biochimica et Biophysica Acta (BBA) – Biomembranes 693(2):398–406. doi:10.1016/0005-2736(82)90447-3

    Article  CAS  Google Scholar 

  • Soubias O, Gawrisch K (2007) Docosahexaenoyl chains isomerize on the sub-nanosecond time scale. J Am Chem Soc 129(21):6678–6679. doi:10.1021/ja068856c

    Article  PubMed  CAS  Google Scholar 

  • Soubias O, Gawrisch K (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta 1818(2):234–240. doi:10.1016/j.bbamem. 2011.08.034

    Article  PubMed  CAS  Google Scholar 

  • Soubias O, Teague WE, Gawrisch K (2006) Evidence for specificity in lipid-rhodopsin interactions. J Biol Chem 281(44):33233–33241. doi:10.1074/jbc.M603059200

    Article  PubMed  CAS  Google Scholar 

  • Soubias O, Niu SL, Mitchell DC, Gawrisch K (2008) Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content. J Am Chem Soc 130(37):12465–12471. doi:10.1021/ja803599x

    Article  PubMed  CAS  Google Scholar 

  • Soubias O, Teague WE, Hines KG, Mitchell DC, Gawrisch K (2010) Contribution of membrane elastic energy to rhodopsin function. Biophys J 99(3):817–824. doi:10.1016/ j.bpj.2010.04.068

    Article  PubMed  CAS  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. doi:10.1002/ jcc.20291

    Article  Google Scholar 

  • Valiyaveetil FI, Zhou Y, MacKinnon R (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41(35):10771–10777. doi:10.1021/bi026215y

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Botelho AV, Martinez GV, Brown MF (2002) Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 124(26):7690–7701

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF (1988) Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27:6469–6474

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1992) Structure of a fluid dioloeoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data: III. Complete structure. Biophys J 61:434–447

    Article  PubMed  CAS  Google Scholar 

  • Winger M, Trzesniak D, Baron R, van Gunsteren WF (2009) On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys Chem Chem Phys 11(12):1934–1941. doi:10.1039/b818713d

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Nick Leioatts, Dejun Lin and Tod Romo for critical reviews of this manuscript. We would also like to gratefully acknowledge financial support from the U.S. National Institutes of Health (1R01GM095496). We also thank the University of Rochester’s Center for Integrated Research Computing for the computing resources necessary to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Grossfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horn, J.N., Kao, TC., Grossfield, A. (2014). Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_5

Download citation

Publish with us

Policies and ethics