Skip to main content

Revisiting Mortimer’s Genome Renewal Hypothesis: Heterozygosity, Homothallism, and the Potential for Adaptation in Yeast

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

In diploid organisms, the frequency and nature of sexual cycles have a major impact on genome-wide patterns of heterozygosity. Recent population genomic surveys in the budding yeast, Saccharomyces cerevisiae, have revealed surprising levels of genomic heterozygosity in what has been traditionally considered a highly inbred organism. I review evidence and hypotheses regarding the generation, maintenance, and evolutionary consequences of genomic heterozygosity in S. cerevisiae. I propose that high levels of heterozygosity in S. cerevisiae, arising from population admixture due to human domestication, coupled with selfing during rare sexual cycles, can facilitate rapid adaptation to novel environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423–434

    Article  PubMed  CAS  Google Scholar 

  • Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270

    Article  PubMed  CAS  Google Scholar 

  • Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer RW, Basso LC, de Amorim HV, de Oliveira AJ, Davis RW, Ronaghi M, Gharizadeh B, Stambuk BU (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics 287(6):485–494

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287

    Google Scholar 

  • Cubillos FA, Vásquez C, Faugeron S, Ganga A, Martínez C (2009) Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations. FEMS Microbiol Ecol 67(1):162–170

    Article  PubMed  CAS  Google Scholar 

  • Cubillos FA, Billi E, Zörgö E, Parts L, Fargier P, Omholt S, Blomberg A, Warringer J, Louis EJ, Liti G (2011) Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol 20(7): 1401–1413

    Article  PubMed  Google Scholar 

  • Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422(6927): 68–72

    Article  PubMed  CAS  Google Scholar 

  • Demogines A, Wong A, Aquadro C, Alani E (2008) Incompatibilities involving yeast mismatch repair genes: a role for genetic modifiers and implications for disease penetrance and variation in genomic mutation rates. PLoS Genet 4(6):e1000103

    Article  PubMed  Google Scholar 

  • Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One 4(4):e5317

    Article  PubMed  Google Scholar 

  • Drees BL, Thorsson V, Carter GW, Rives AW, Raymond MZ, Avila-Campillo I, Shannon P, Galitski T (2005) Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 6(4):R38

    Article  PubMed  Google Scholar 

  • Esberg A, Muller LAH, McCusker JH (2011) Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93. PLoS One 6(9):e25211

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of saccharomyces cerevisiae. PLoS Genet 1(1):66–71

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405(6785):451–454

    Article  PubMed  CAS  Google Scholar 

  • Gagneur J, Sinha H, Perocchi F, Bourgon R, Huber W, Steinmetz LM (2009) Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol 5:274

    Article  PubMed  Google Scholar 

  • Goddard MR, Anfang N, Tang R, Gardner RC, Jun C (2010) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ Microbiol 12(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546, 563–567

    Google Scholar 

  • Granek JA, Murray D, Kayrkçi O, Magwene PM (2013) The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae. Genetics 193(2):587–600

    Article  PubMed  CAS  Google Scholar 

  • Greig D, Louis EJ, Borts RH, Travisano M (2002) Hybrid speciation in experimental populations of yeast. Science 298(5599):1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, Botstein D, Kruglyak L (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single dna microarray. Science 311(5769):1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘flor’ film ageing of dry sherry-type wines. Yeast 13(2):101–117

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561–599

    Article  PubMed  CAS  Google Scholar 

  • Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116(3): 405–415

    Article  PubMed  CAS  Google Scholar 

  • Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang Y-M, Su C-H, Bennett RJ, Wang Y, Berman J (2013) The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494(7435):55–59

    Article  PubMed  CAS  Google Scholar 

  • Hittinger CT (2013) Saccharomyces diversity and evolution: a budding model genus. Trends Genet 29: 309–317

    Article  PubMed  CAS  Google Scholar 

  • Hyma KE, Fay JC (2013) Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Mol Ecol 22:2917–2930

    Article  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101(19):7329–7334

    Article  PubMed  CAS  Google Scholar 

  • Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB (2012) Sex, prions, and plasmids in yeast. Proc Natl Acad Sci U S A 109(40):E2683–E2690

    Article  PubMed  CAS  Google Scholar 

  • Kirby GC (1984) Breeding systems and heterozygosity in populations of tetrad forming fungi. Heredity 52: 35–41

    Article  Google Scholar 

  • Kuehne HA, Murphy HA, Francis CA, Sniegowski PD (2007) Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr Biol 17(5):407–411

    Article  PubMed  CAS  Google Scholar 

  • Levy SF, Ziv N, Siegal ML (2012) Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol 10(5):e1001325

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108(35):14539–14544

    Article  PubMed  CAS  Google Scholar 

  • Liti G, Schacherer J (2011) The rise of yeast population genomics. C R Biol 334(8–9):612–619

    Article  PubMed  CAS  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341

    Article  PubMed  CAS  Google Scholar 

  • Magwene PM, Kayikçi Ö, Granek JA, Reininga JM, Scholl Z, Murray D (2011) Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(5):1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Masel J, Lyttle DN (2011) The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species. Theor Popul Biol 80(4):317–322

    Article  PubMed  Google Scholar 

  • McCusker JH (2006) Saccharomyces cerevisiae: an emerging and model pathogenic fungus. In: Heitman J, Edwards JE, Filler SG, Mitchell AP (eds) Molecular principles of fungal pathogenesis. American Society for Microbiology, Washington, DC

    Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 C and form pseudohyphae. Infect Immun 62(12):5447–5455

    PubMed  CAS  Google Scholar 

  • Morales L, Dujon B (2012) Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol Mol Biol Rev 76(4):721–739

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10(4):403–409

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10(12):1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Muller LAH, McCusker JH (2009) Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments. Mol Ecol 18(13):2779–2786

    Article  PubMed  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Sniegowski PD (1998) Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Can J Microbiol 44(11):1045–1050

    PubMed  CAS  Google Scholar 

  • Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38(9): 1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458(7236):342–345

    Article  PubMed  CAS  Google Scholar 

  • Sipiczki M (2011) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61:85–93.

    Article  Google Scholar 

  • Skelly DA, Ronald J, Connelly CF, Akey JM (2009) Population genomics of intron splicing in 38 Saccharomyces cerevisiae genome sequences. Genome Biol Evol 1:466–478

    Article  PubMed  Google Scholar 

  • Sniegowski PD, Dombrowski PG, Fingerman E (2002) Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1(4):299–306

    PubMed  CAS  Google Scholar 

  • Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzi S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci U S A 109(33):13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Sweeney JY, Kuehne HA, Sniegowski PD (2004) Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res 4(4–5):521–525

    Article  PubMed  CAS  Google Scholar 

  • Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci U S A 105(12):4957–4962

    Article  PubMed  CAS  Google Scholar 

  • Wang Q-M, Liu W-Q, Liti G, Wang S-A, Bai F-Y (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21(22):5404–5417

    Article  PubMed  Google Scholar 

  • Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104(31):12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464(7292): 1187–1191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Helen Murphy and Cliff Zeyl for discussions and feedback, as well as two anonymous reviewers for their critical comments and suggestions on the manuscript. Ludo Muller and John McCusker kindly provided data on spore viability and heterozygosity. The work was supported in part by awards from NSF (MCB-0614959) and NIH (P50GM081883-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Magwene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Magwene, P.M. (2014). Revisiting Mortimer’s Genome Renewal Hypothesis: Heterozygosity, Homothallism, and the Potential for Adaptation in Yeast. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_3

Download citation

Publish with us

Policies and ethics