Skip to main content

Signatures of Natural Selection and Ecological Differentiation in Microbial Genomes

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

We live in a microbial world. Most of the genetic and metabolic diversity that exists on earth – and has existed for billions of years – is microbial. Making sense of this vast diversity is a daunting task, but one that can be approached systematically by analyzing microbial genome sequences. This chapter explores how the evolutionary forces of recombination and selection act to shape microbial genome sequences, leaving signatures that can be detected using comparative genomics and population-genetic tests for selection. I describe the major classes of tests, paying special attention to their relative strengths and weaknesses when applied to microbes. Specifically, I apply a suite of tests for selection to a set of closely-related bacterial genomes with different microhabitat preferences within the marine water column, shedding light on the genomic mechanisms of ecological differentiation in the wild. I will focus on the joint problem of simultaneously inferring the boundaries between microbial populations, and the selective forces operating within and between populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baas-Becking LGM (1934) Geobiologie of Inleiding Tot de Milieukunde. W.P. Van Stockum & Zoon, The Hague

    Google Scholar 

  • Boucher Y, Cordero OX, Takemura A et al (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2:e00335–10

    Article  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Didelot X, Held NL et al (2012) Patterns of gene flow define species of thermophilic archaea. PLoS Biol 10:e1001265

    Article  PubMed  CAS  Google Scholar 

  • Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386

    Article  PubMed  CAS  Google Scholar 

  • Coleman ML, Chisholm SW (2010) Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA 107:18634–18639

    Article  PubMed  CAS  Google Scholar 

  • Cordero OX, Wildschutte H, Kirkup B et al (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Croucher NJ, Harris SR, Fraser C et al (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434

    Article  PubMed  CAS  Google Scholar 

  • de Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA 102(Suppl 1):6600–6607

    Article  PubMed  Google Scholar 

  • Delong EF (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  • Denef VJ, Kalnejais LH, Mueller RS et al (2010a) Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Natl Acad Sci USA 107:2383–2390

    Article  PubMed  CAS  Google Scholar 

  • Denef VJ, Mueller RS, Banfield JF (2010b) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4:599–610

    Article  PubMed  Google Scholar 

  • Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175:1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Didelot X, Lawson D, Darling A, Falush D (2010) Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186:1435–1449

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:116

    Article  PubMed  Google Scholar 

  • Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PK, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45(10):1183–1189

    Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fraser C, Alm EJ, Polz MF et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  PubMed  CAS  Google Scholar 

  • Friedman J, Alm EJ, Shapiro BJ (2013) Sympatric speciation: when is it possible in bacteria? PLoS ONE 8:e53539

    Article  PubMed  CAS  Google Scholar 

  • Frischkorn KR, Stojanovski A, Paranjpye R (2013) Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 15:1416–1427

    Article  PubMed  CAS  Google Scholar 

  • Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:1–13

    Article  Google Scholar 

  • Haegeman B, Weitz JS (2012) A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13:196–196

    Article  PubMed  CAS  Google Scholar 

  • Hanage WP, Spratt BG, Turner KM, Fraser C (2006) Modelling bacterial speciation. Philos Trans R Soc Lond B Biol Sci 361:2039–2044

    Article  PubMed  Google Scholar 

  • Holt KE, Parkhill J, Mazzoni CJ et al (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella typhi. Nat Genet 40:987–993

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  PubMed  CAS  Google Scholar 

  • Hunt DE, David LA, Gevers D et al (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Wolf YI, Aravind L (2002) Horizontal gene transfer and its role in the evolution of prokaryotes. In: Syvanen M, Kado CI (eds) Horizontal gene transfer, 2nd edn. Academic, London, pp277–304

    Google Scholar 

  • Lee SJ, Gralla JD (2002) Promoter use by sigma 38 (rpoS) RNA polymerase. Amino acid clusters for DNA binding and isomerization. J Biol Chem 277:47420–47427

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Costello JC, Holloway AK, Hahn MW (2008) “Reverse ecology” and the power of population genomics. Evolution 62:2984–2994

    Article  PubMed  Google Scholar 

  • Lin W, Fullner KJ, Clayton R et al (1999) Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA 96:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, Cohan FM (1999) Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152:1459–1474

    PubMed  CAS  Google Scholar 

  • Mandel MJ, Wollenberg MS, Stabb EV et al (2009) Asingle regulatory gene is sufficient to alter bacterial host range. Nature 457:215–218

    Article  Google Scholar 

  • Marttinen P, Hanage WP, Croucher NJ et al (2012) Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 40:e6

    Article  PubMed  CAS  Google Scholar 

  • Mau B, Glasner JD, Darling AE, Perna NT (2006) Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. Genome Biol 7:R44

    Article  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • McInerney JO, Pisani D, Bapteste E, O’Connell MJ (2011) The public goods hypothesis for the evolution of life on earth. Biol Direct 6:41

    Article  PubMed  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA et al (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Milkman R, Bridges MM (1990) Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517

    PubMed  CAS  Google Scholar 

  • Neher RA, Leitner T (2010) Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput Biol 6:e1000660

    Article  PubMed  Google Scholar 

  • Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 29:170

    Article  PubMed  CAS  Google Scholar 

  • Pybus OG, Rambaut A (2009) Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 10:540–550

    Article  PubMed  CAS  Google Scholar 

  • Raghavan R, Kelkar YD, Ochman H (2012) A selective force favoring increased G+C content in bacterial genes. Proc Natl Acad Sci 109:14504–14507

    Article  PubMed  CAS  Google Scholar 

  • Retchless AC, Lawrence JG (2010) Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci USA 107:11453–11458

    Article  PubMed  CAS  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Carroll SB (2008) Frequent and widespread parallel evolution of protein sequences. Mol Biol Evol 25:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM et al (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837

    Article  PubMed  CAS  Google Scholar 

  • Schubert S, Darlu P, Clermont O et al (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5:e1000257

    Article  PubMed  Google Scholar 

  • Shapiro JA, Huang W, Zhang C et al (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci USA 104:2271–2276

    Article  PubMed  Google Scholar 

  • Shapiro BJ, David LA, Friedman J, Alm EJ (2009) Looking for Darwin’s footprints in the microbial world. Trends Microbiol 17:196–204

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BJ, Friedman J, Cordero OX et al (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51

    Article  PubMed  CAS  Google Scholar 

  • Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA et al (2013) Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci USA 110:11923–11927

    Google Scholar 

  • Simmons SL, DiBartolo G, Denef VJ et al (2008) Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. Plos Biol 6:1427–1442

    Article  CAS  Google Scholar 

  • Smillie CS, Smith MB, Friedman J et al (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    Article  PubMed  CAS  Google Scholar 

  • Sokurenko EV (2004) Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol Biol Evol 21:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Szabó G, Preheim SP, Kauffman KM et al (2013) Reproducibility of Vibrionaceae population structure in coastal bacterioplankton. ISME J 7:509–519

    Article  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tenaillon O, Rodriguez-Verdugo A, Gaut RL et al (2012) The molecular diversity of adaptive convergence. Science 335:457–461

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  PubMed  Google Scholar 

  • van Gremberghe I, Leliaert F, Mergeay J et al (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6:e19561

    Article  PubMed  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. Plos Biol 4:e72

    Article  PubMed  Google Scholar 

  • Vos M (2011) A species concept for bacteria based on adaptive divergence. Trends Microbiol 19:1–7

    Article  PubMed  CAS  Google Scholar 

  • Whitaker RJ, Banfield JF (2006) Population genomics in natural microbial communities. Trends Ecol Evol 21:508–516

    Article  PubMed  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2008) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568--573

    Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jesse Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapiro, B.J. (2014). Signatures of Natural Selection and Ecological Differentiation in Microbial Genomes. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_17

Download citation

Publish with us

Policies and ethics