Skip to main content

Evolutionary Genomics of Environmental Pollution

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agra AR, Guilhermino L, Soares AMVM, Barata C (2010) Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage. Environ Toxicol Chem 29:939–946

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA 106:9987–9994

    PubMed  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Google Scholar 

  • Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT (2005) Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Design 11:1805–1843

    CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    PubMed  CAS  Google Scholar 

  • Beckie HJ, Reboud X (2009) Selecting for weed resistance: herbicide rotation and mixture. Weed Technol 23:363–370

    CAS  Google Scholar 

  • Bello SM, Franks DG, Stegeman JJ, Hahn ME (2001) Acquired resistance to aryl hydrocarbon receptor agonists in a population of Fundulus heteroclitus from a marine superfund site: in vivo and in vitro studies on the induction of xenobiotic-metabolizing enzymes. Toxicol Sci 60:77–91

    PubMed  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    PubMed  CAS  Google Scholar 

  • Blaustein AR, Belden LK (2003) Amphibian defenses against ultraviolet-B radiation. Evol Dev 5:89–97

    PubMed  CAS  Google Scholar 

  • Bozinovic G, Oleksiak MF (2010) Embryonic gene expression among pollutant resistant and sensitive Fundulus heteroclitus populations. Aquat Toxicol 98:221–229

    PubMed  CAS  Google Scholar 

  • Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu DY, Robinson JM, Khouri HM, Eisen JA, Cary SC (2009) Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. Plos Genet 5(2):e1000362

    Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. Plos Biol 8(4):e1000357

    Google Scholar 

  • Clark BW, Di Giulio RT (2012) Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides. Ecotoxicology 21:465–474

    PubMed  CAS  Google Scholar 

  • Clark BW, Matson CW, Jung D, Di Giulio RT (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 99:232–240

    PubMed  CAS  Google Scholar 

  • Cohen S (2002) Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress. Mol Biol Evol 19:1870–1880

    PubMed  CAS  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307:1928–1933

    PubMed  CAS  Google Scholar 

  • Cook LM, Grant BS, Saccheri IJ, Mallet J (2012) Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol Lett 8:609–612

    PubMed  CAS  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    PubMed  CAS  Google Scholar 

  • Dawkins R (1983) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford

    Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461

    PubMed  Google Scholar 

  • De Schamphelaere KA, Glaholt S, Asselman J, Messiaen M, De Coninck D, Janssen CR, Colbourne JK, Shaw JR (2011) Will genetic adaptation of natural populations to chemical pollution result in lower or higher tolerance to future climate change? Integr Environ Assess Manag 7:141–143

    PubMed  Google Scholar 

  • Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    PubMed  Google Scholar 

  • Elskus AA, Monosson E, McElroy AE, Stegeman JJ, Woltering DS (1999) Altered CYP1A expression in Fundulus heteroclitus adults and larvae: a sign of pollutant resistance? Aquat Toxicol 45:99–113

    CAS  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163–170

    PubMed  CAS  Google Scholar 

  • Geffeney SL, Fujimoto E, Brodie ED, Brodie ED, Ruben PC (2005) Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction. Nature 434:759–763

    PubMed  CAS  Google Scholar 

  • Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L (2012) Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science 335:574–578

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Beedle A, Hanson MA (2009) Principles of evolutionary medicine. Oxford University Press, Oxford

    Google Scholar 

  • Goldstone JV, Goldstone HMH, Morrison AM, Tarrant A, Kern SE, Woodin BR, Stegeman JJ (2007) Cytochrome p450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): origin and diversification of the CYP1 gene family. Mol Biol Evol 24:2619–2631

    PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Nebert DW (1990) Evolution of the P450-gene superfamily – animal plant warfare, molecular drive and human genetic-differences in drug oxidation. Trends Genet 6:182–186

    PubMed  CAS  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Hahn ME, Karchner SI, Franks DG, Merson RR (2004) Aryl hydrocarbon receptor polymorphisms and dioxin resistance in Atlantic killifish (Fundulus heteroclitus). Pharmacogenetics 14:131–143

    PubMed  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Franks DG, Evans BR, Nacci D, Champlin D, Cohen S (2005) Mechanism of PCB – and dioxin-resistance in fish in the Hudson River Estuary: role of receptor polymorphisms. Final report, Hudson River Foundation Grant 004/02A

    Google Scholar 

  • Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127

    Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395, U344

    PubMed  CAS  Google Scholar 

  • Harbeitner RC, Hahn ME, Timme-Laragy AR (2013) Differential sensitivity to pro-oxidant exposure in two populations of killifish (Fundulus heteroclitus). Ecotoxicology 22:387–401

    PubMed  CAS  Google Scholar 

  • Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK, La Salle J, Oakeshott JG (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762

    PubMed  CAS  Google Scholar 

  • Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–1653

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    PubMed  Google Scholar 

  • Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jorgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183

    Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    PubMed  CAS  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. Plos Genet 6(2):e1000862

    Google Scholar 

  • Jansen M, Coors A, Stoks R, De Meester L (2011) Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology 20:543–551

    PubMed  CAS  Google Scholar 

  • Kettlewell B (1973) The evolution of melanism. The study of a recurring necessity; with special reference to industrial melanism in the Lepidoptera. Clarendon, Oxford

    Google Scholar 

  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:8618–8622

    PubMed  CAS  Google Scholar 

  • King RB (2003) Mendelian inheritance of melanism in the garter snake Thamnophis sirtalis. Herpetologica 59:484–489

    Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112:145–164

    PubMed  Google Scholar 

  • Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen LO (2011) Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. Embo J 30:4437–4449

    PubMed  CAS  Google Scholar 

  • Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus-hoffmeisteri. Aquat Toxicol 19:97–112

    CAS  Google Scholar 

  • Klerks PL, Levinton JS (1989) Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site. Biol Bull 176:135–141

    CAS  Google Scholar 

  • Klerks PL, Weis JS (1987) Genetic adaptation to heavy-metals in aquatic organisms – a review. Environ Pollut 45:173–205

    PubMed  CAS  Google Scholar 

  • Klerks PL, Xie LT, Levinton JS (2011) Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance. Ecotoxicology 20:513–523

    PubMed  CAS  Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    PubMed  CAS  Google Scholar 

  • La Duc MT, Benardini JN, Kempf MJ, Newcombe DA, Lubarsky M, Venkateswaran K (2007) Microbial diversity of Indian Ocean hydrothermal vent plumes: microbes tolerant of desiccation, peroxide exposure, and ultraviolet and gamma-irradiation. Astrobiology 7:416–431

    PubMed  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Google Scholar 

  • Laxminarayan R, Heymann DL (2012) Challenges of drug resistance in the developing world. Br Med J 344

    Google Scholar 

  • Levinton JS, Suatoni E, Wallace W, Junkins R, Kelaher B, Allen BJ (2003) Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. Proc Natl Acad Sci USA 100:9889–9891

    PubMed  CAS  Google Scholar 

  • Li XC, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    PubMed  Google Scholar 

  • Lotrich VA (1975) Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodontidae) in a tidal creek. Ecology 56:191–198

    Google Scholar 

  • Lyman WJ (1984) Establishing sediment criteria for chemicals – industrial perspectives. In: Dickson KL, Maki AW, Brungs WA (eds) Fate and effects of sediment-bound chemicals in aquatic systems. Permagon Press, New York, pp 378–387

    Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    CAS  Google Scholar 

  • Majerus MEN (1998) Melanism: evolution in action. Oxford University Press, Oxford

    Google Scholar 

  • Maron LG, Guimaraes CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ, Buckler ES, Coluccio AE, Danilova TV, Kudrna D, Magalhaes JV, Pineros MA, Schatz MC, Wing RA, Kochian LV (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA 110:5241–5246

    PubMed  CAS  Google Scholar 

  • Maroni G, Wise J, Young JE, Otto E (1987) Metallothionein gene duplications and metal tolerance in natural-populations of Drosophila-melanogaster. Genetics 117:739–744

    PubMed  CAS  Google Scholar 

  • Marquis O, Miaud C, Ficetola GF, Bocher A, Mouchet F, Guittonneau S, Devaux A (2009) Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients. Aquat Toxicol 95:152–161

    PubMed  CAS  Google Scholar 

  • Martinez DE, Levinton J (1996) Adaptation to heavy metals in the aquatic oligochaete Limnodrilus hoffmeisteri: evidence for control by one gene. Evolution 50:1339–1343

    Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50

    PubMed  CAS  Google Scholar 

  • Mckenzie JA, Batterham P (1994) The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol Evol 9:166–169

    PubMed  CAS  Google Scholar 

  • McMillan AM, Bagley MJ, Jackson SA, Nacci DE (2006) Genetic diversity and structure of an estuarine fish (Fundulus heteroclitus) indigenous to sites associated with a highly contaminated urban harbor. Ecotoxicology 15:539–548

    PubMed  CAS  Google Scholar 

  • Medina MH, Correa JA, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67:2105–2114

    PubMed  CAS  Google Scholar 

  • Meyer J, Di Giulio R (2002) Patterns of heritability of decreased EROD activity and resistance to PCB 126-induced teratogenesis in laboratory-reared offspring of killifish (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, VA, USA. Mar Environ Res 54:621–626

    PubMed  CAS  Google Scholar 

  • Meyer JN, Di Giulio RT (2003) Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecol Appl 13:490–503

    Google Scholar 

  • Meyer JN, Nacci DE, Di Giulio RT (2002) Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments. Toxicol Sci 68:69–81

    PubMed  CAS  Google Scholar 

  • Monosson E (2012) Evolution in a toxic world: how life responds to chemical threats. Island Press, Washington, DC

    Google Scholar 

  • Mulvey M, Newman MC, Vogelbein W, Unger MA (2002) Genetic structure of Fundulus heteroclitus from PAH-contaminated and neighboring sites in the Elizabeth and York Rivers. Aquat Toxicol 61:195–209

    PubMed  CAS  Google Scholar 

  • Mulvey M, Newman MC, Vogelbein WK, Unger MA, Ownby DR (2003) Genetic structure and mtDNA diversity of Fundulus heteroclitus populations from polycyclic aromatic hydrocarbon-contaminated sites. Environ Toxicol Chem 22:671–677

    PubMed  CAS  Google Scholar 

  • Nacci D, Coiro L, Champlin D, Jayaraman S, McKinney R, Gleason TR, Munns WR, Specker JL, Cooper KR (1999) Adaptations of wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants. Mar Biol 134:9–17

    Google Scholar 

  • Nacci DE, Gleason T, Gutjahr-Gobell R, Huber M, Munns WRJ (2002) Effects of environmental stressors on wildlife populations. In: Newman MC (ed) Coastal and Estuarine Risk Assessment: risk on the edge. CRC Press/Lewis Publishers, Washington, DC

    Google Scholar 

  • Nacci D, Champlin D, Jayaraman S (2010) Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic Killifish) to polychlorinated biphenyls (PCBs). Estuar Coast Shelf Sci 33:853–864

    CAS  Google Scholar 

  • Oleksiak MF, Karchner SI, Jenny MJ, Franks DG, Welch DBM, Hahn ME (2011) Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site. BMC Genomics 12:263

    PubMed  CAS  Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119–127

    PubMed  CAS  Google Scholar 

  • Otto E, Young JE, Maroni G (1986) Structure and expression of a tandem duplication of the Drosophila metallothionein gene. Proc Natl Acad Sci USA 83:6025–6029

    PubMed  CAS  Google Scholar 

  • Ouzounis CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor – exobiology from a terrestrial perspective. Res Microbiol 157:57–68

    PubMed  CAS  Google Scholar 

  • Ownby DR, Newman MC, Mulvey M, Vogelbein WK, Unger MA, Arzayus LF (2002) Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments. Environ Toxicol Chem 21:1897–1902

    PubMed  CAS  Google Scholar 

  • Palumbi SR (2001) Evolution – humans as the world’s greatest evolutionary force. Science 293:1786–1790

    PubMed  CAS  Google Scholar 

  • Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Philos Trans R Soc B 364:1483–1489

    CAS  Google Scholar 

  • Pelz HJ, Rost S, Hunerberg M, Fregin A, Heiberg AC, Baert K, MacNicoll AD, Prescott CV, Walker AS, Oldenburg J, Muller CR (2005) The genetic basis of resistance to anticoagulants in rodents. Genetics 170:1839–1847

    PubMed  CAS  Google Scholar 

  • Posthuma L, van Straalen NM (1993) Heavy-metal adaptation in terrestrial invertebrates – a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Phys C 106:11–38

    Google Scholar 

  • Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. Plos Genet 6:1–11

    Google Scholar 

  • Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO (2011) Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–1141

    PubMed  CAS  Google Scholar 

  • Roark SA, Nacci D, Coiro L, Champlin D, Guttman SI (2005) Population genetic structure of a nonmigratory estuarine fish (Fundulus heteroclitus) across a strong gradient of polychlorinated biphenyl contamination. Environ Toxicol Chem 24:717–725

    PubMed  CAS  Google Scholar 

  • Roberts RB, Hu YN, Albertson RC, Kocher TD (2011) Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proc Natl Acad Sci USA 108:13194–13199

    PubMed  CAS  Google Scholar 

  • Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66:1–17

    PubMed  Google Scholar 

  • Roelofs D, Janssens TKS, Timmermans MJTN, Nota B, Marien J, Bochdanovits Z, Ylstra B, Van Straalen NM (2009) Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol 18:3227–3239

    PubMed  CAS  Google Scholar 

  • Roux C, Castric V, Pauwels M, Wright SI, Saumitou-LapradeP, Vekemans X (2011) Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? Plos One 6:e26872

    Google Scholar 

  • Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jonsson B, Schluter D, Kingsley DM (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428:717–723

    PubMed  CAS  Google Scholar 

  • Shine R (2012) Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol Appl 5:107–116

    Google Scholar 

  • Sterenborg I, Roelofs D (2003) Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression. Insect Biochem Molec 33:741–747

    CAS  Google Scholar 

  • Sweeney J, Deegan L, Garritt R (1998) Population size and site fidelity of Fundulus heteroclitus in a macrotidal saltmarsh creek. Biol Bull 195:238–239

    Google Scholar 

  • Teo SLH, Able KW (2003) Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh. Estuar Coast Shelf Sci 26:720–730

    Google Scholar 

  • van Straalen N, Hoffmann A (2000) Review of experimental evidence for physiological costs of tolerance to toxicants. In: Kammenga J, Laskowski R (eds) Demography in ecotoxicology. Wiley, Chichester, p xix, 297 p

    Google Scholar 

  • Van Veld PA, Nacci DE (2008a) Toxicity resistance. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. Taylor and Francis, Boca Raton, pp 597–641

    Google Scholar 

  • Van Veld PA, Nacci DE (2008b) Toxicity resistance. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. Taylor and Francis, Boca Raton

    Google Scholar 

  • van’t Hof AE, Saccheri IJ (2010) Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. PLoS One 5:e10889

    Google Scholar 

  • van’t Hof AE, Edmonds N, Dalikova M, Marec F, Saccheri IJ (2011) Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332:958–960

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    CAS  Google Scholar 

  • Ward TJ, Robinson WE (2005) Evolution of cadmium resistance in Daphnia magna. Environ Toxicol Chem 24:2341–2349

    PubMed  CAS  Google Scholar 

  • Wen ZM, Rupasinghe S, Niu GD, Berenbaum MR, Schuler MA (2006) CYP6B1 and CYP6B3 of the black swallowtail (Papilio polyxenes): Adaptive evolution through subfunctionalization. Mol Biol Evol 23:2434–2443

    PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1: REVIEWS3003

    Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Global pesticide resistance in arthropods. CABI, Wallingford

    Google Scholar 

  • Whitehead A, Triant DA, Champlin D, Nacci D (2010) Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population. Mol Ecol 19:5186–5203

    PubMed  CAS  Google Scholar 

  • Whitehead A, Pilcher W, Champlin D, Nacci D (2012) Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc R Soc B 279:427–433

    Google Scholar 

  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674

    PubMed  CAS  Google Scholar 

  • Williams RJP (2007) A system’s view of the evolution of life. J R Soc Interface 4:1049–1070

    PubMed  CAS  Google Scholar 

  • Williams LM, Oleksiak MF (2008) Signatures of selection in natural populations adapted to chronic pollution. BMC Evol Biol 8:282

    PubMed  Google Scholar 

  • Williams LM, Oleksiak MF (2011) Ecologically and evolutionarily important SNPs identified in natural populations. Mol Biol Evol 28:1817–1826

    PubMed  CAS  Google Scholar 

  • Williams RJP, Rickaby R (2012) Evolution’s destiny: co-evolving chemistry of the environment and life. Royal Society of Chemistry, London

    Google Scholar 

  • Wirgin I, Waldman JR (2004) Resistance to contaminants in North American fish populations. Mutat Res Fundam Mol Mech Mutagenesis 552:73–100

    CAS  Google Scholar 

  • Wirgin I, Roy NK, Loftus M, Chambers RC, Franks DG, Hahn ME (2011) Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science 331:1322–1325

    PubMed  CAS  Google Scholar 

  • Wittkopp PJ, Carroll SB, Kopp A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19:495–504

    PubMed  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847

    PubMed  CAS  Google Scholar 

  • Yozzo DJ, Smith DE (1998) Composition and abundance of resident marsh-surface nekton: comparison between tidal freshwater and salt marshes in Virginia, USA. Hydrobiologia 362:9–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Whitehead .

Editor information

Editors and Affiliations

Glossary

AHR

The aryl hydrocarbon receptor (AHR) is a cytosolic transcription factor. Pollutants such as dioxins, PCBs, and PAHs, act as ligands for this receptor. Once activated, the receptor-ligand complex migrates to the nucleus, and acts as a transcription factor to activate the transcription of a battery of genes. Some of the activated genes are responsible for metabolism of the ligand and for the emergence of toxicity

Anthropogenic

Anthropogenic refers to effects or objects that are of human origin, or that are influenced by humans

Comparative transcriptomics

Comparative transcriptomics is an experimental design that includes the comparison of transcriptomic responses to some experimental variable (e.g., environmental or pollutant challenge) between strains, populations, or species

Contaminant

A contaminant is a compound that is released into the environment as a result of human activities, but that may or may not be toxic to exposed organisms

Contemporary evolution

Contemporary evolution refers to evolutionary change in response to recent changes in the environment

Copy number variation

Specific regions of the genome may increase in copy number from duplication of chromosome segments, duplication of whole chromosomes, or duplication of entire genomes. Protein family expansion (e.g., globins, HOX genes) is often from duplication of chromosome segments that include an entire protein sequence. The fate of duplicate copies may include pseudogenization, maintenance of function, neofunctionalization, or subfunctionalization

Epistasis

Epistasis is a phenomenon that refers to the non-additive effects of multiple genes, where the effects of different loci are not independent – where the effects of one gene are dependent on other genes

Genome scan

Given genome-scale sequence data for many individuals for two or more populations, genome scans are a suite of exploratory methods that are designed to detect genetic signatures of natural selection in populations. Genetic markers that exhibit signatures of selection could be the causative genetic variants, but are more likely to be physically linked to causative variants

Neofunctionalization

Neofunctionalization is a result of functional divergence of gene paralogs following duplication, where the duplicate copy acquires an entirely new function that is distinct from the original gene’s functions

PAH

Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals that are common environmental pollutants, where major sources are from spilled crude oil and from fuel combustion. PAHs act as ligands for the AHR, and exert at least part of their toxicity through the activation of the AHR signaling pathway

PCB

Polychlorinated biphenyls (PCBs) are a class of chemicals that are persistent environmental pollutants, where major sources are from wastes from industrial processes where they were used as coolant fluids, hydraulic fluids, and insulation fluids. PCBs act as ligands for the AHR, and exert at least part of their toxicity through the activation of the AHR signaling pathway

Pleiotropy

A gene product is considered pleiotropic if it influences more than one phenotypic trait

Pollutant

A pollutant is a compound that is released into the environment as a result of human activities, and that has negative effects in exposed organisms

QTL mapping

Quantitative trait locus (QTL) mapping involves matching genotype to phenotype from experimental crosses to detect genetic variants that are physically linked to phenotypes of interest. Genetic markers that are associated with the phenotype are not necessarily the causative loci, but are presumed to be physically linked with causative loci

Subfunctionalization

Subfunctionalization is a result of functional divergence of gene paralogs following duplication, where the duplicate copies retain different parts of the original gene’s functions

Toxicant

Toxicants are chemicals that exert toxic effects at sufficiently high doses, and that are not natural products, but rather products of human activity

Toxin

Toxins are chemicals that exert toxic effects at sufficiently high doses, and that are natural products of biosynthesis by organisms.

Xenobiotic

A compound that may be found within organisms, but that is foreign to those organisms, usually in reference to manufactured chemicals

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whitehead, A. (2014). Evolutionary Genomics of Environmental Pollution. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_16

Download citation

Publish with us

Policies and ethics