Skip to main content

Edge Selection for Degree Anonymization on K Shortest Paths

  • Conference paper
  • First Online:
The 3rd International Workshop on Intelligent Data Analysis and Management

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 852 Accesses

Abstract

Privacy preserving network publishing has been studied extensively in recent years. Although more works have adopted un-weighted graphs to model network relationships, weighted graph modeling can provide deeper analysis of the degree of relationships. Previous works on weighted graph privacy have concentrated on preserving the shortest path characteristic between pairs of vertices. Two common types of privacy have been proposed. One type of privacy tried to add random noise edge weights to the graph but still maintain the same shortest path. The other privacy, k-shortest path privacy, minimally perturbed edge weights so that there exist k shortest paths. However, the k-shortest path privacy did not consider degree attacks on the nodes of anonymized shortest paths. For example, if the adversary possesses background knowledge of node degrees on the shortest path, the true shortest path can be identified. We have previously presented a new concept called (k 1 , k 2 )-shortest path privacy to prevent such privacy breach [1]. A published network graph with (k 1 , k 2 )-shortest path privacy has at least k 1 indistinguishable shortest paths between the source and destination vertices. In addition, for the non-overlapping vertices on the k 1 shortest paths, there exist at least k 2 vertices with same node degree and lie on more than one shortest path. In this work, we further propose edge insertion and edge weight determination techniques to effectively achieve the proposed privacy. Numerical comparisons based on average clustering coefficient and average shortest path length show that the proposed TNF approach is simple and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang SL, Shih CC, Ting HH, Hong TP (2013) Degree anonymization for k-shortest-path privacy, submitted to 2013. IEEE international conference on SMC, Manchester, October 2013

    Google Scholar 

  2. Government Information Laws. www.privacyinternational.org/foi/survey

  3. Cheng J, Fu A, Liu J (2010) K-isomorphism: privacy preserving network publication against structural attacks. In: SIGMOD conference, 459–470

    Google Scholar 

  4. Das S, Egecioglu O, Abbadi AE (2010) Anonymizing weighted social network graphs. In: ICDE, 904–907

    Google Scholar 

  5. Wang SL, Tsai YC, Kao HY, Hong TP (2010) Anonymizing set-valued social data. The 2010 international symposium on social computing and networking (SocialNet’10), Hangzhou, December 2010

    Google Scholar 

  6. Wang SL, Tsai ZZ, Hong TP, Ting HH (2011) Anonymizing shortest paths on social network graphs. The 3rd Asian conference on intelligent information and database systems (ACIIDS), Daegu, April 2011

    Google Scholar 

  7. Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In: ICDE, 506–515

    Google Scholar 

  8. Zou L, Chen L, Ozsu MT (2009) K-automorphism: A general framework for privacy preserving network publication. In VLDB, 200

    Google Scholar 

  9. Liu L, Liu J, Zhang J (2010) Privacy preservation of affinities in social networks. In: ICIS

    Google Scholar 

  10. Liu L, Wang J, Liu J, Zhang J (2009) Privacy preservation in social networks with sensitive edge weights. In: SDM, 954–965

    Google Scholar 

  11. LINQS, Statistical relational learning group at University of Maryland, USA, http://www.cs.umd.edu/projects/linqs/projects/lbc/

  12. Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: SIGMOD Conference, 93–106

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council, Taiwan, under grant NSC 101–2221-E-390–028-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyue-Liang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wang, SL., Shih, CC., Ting, IH., Hong, TP. (2013). Edge Selection for Degree Anonymization on K Shortest Paths. In: Uden, L., Wang, L., Hong, TP., Yang, HC., Ting, IH. (eds) The 3rd International Workshop on Intelligent Data Analysis and Management. Springer Proceedings in Complexity. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7293-9_7

Download citation

Publish with us

Policies and ethics