Skip to main content

Advances in Technological Design to Optimize Exposure and Improve Image Quality

  • Chapter
  • First Online:
Radiological Safety and Quality
  • 1659 Accesses

Abstract

Multimodality imaging is playing a key role in the clinical management of patients in routine diagnosis, staging, restaging and assessment of response to treatment, surgery and radiation therapy planning of malignant diseases. The complementarity between anatomical (CT and MRI) and functional/molecular (SPECT and PET) imaging modalities is now well recognized and the role of fusion imaging is widely used as a central piece of the general tree of clinical decision making. Moreover, dual-modality imaging technologies including SPECT/CT, PET/CT and nowadays PET/MR represent the leading component of a modern healthcare facility. There have been significant advances in data acquisition along with innovative approaches to image reconstruction and processing with the aim to improve image quality and diagnostic information. However, CT procedures involve relatively high doses to the patient, which triggered many initiatives to reduce the delivered dose particularly in paediatric practice.

This chapter discusses the state-of-the-art developments and challenges of multimodality medical imaging technologies and dose reduction strategies. Future opportunities and the challenges limiting their adoption in clinical and research settings will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Accorsi R, Karp JS, Surti S (2010) Improved dose regimen in pediatric PET. J Nucl Med 51(2):293–300

    Article  PubMed  Google Scholar 

  2. Alavi A, Basu S, Torigian D et al (2008) Is planar imaging in radiology and nuclear medicine a viable option for the 21st century? Q J Nucl Med Mol Imaging 52(4):319–322

    CAS  PubMed  Google Scholar 

  3. Alessio AM, Kinahan PE, Manchanda V et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50(10):1570–1577

    Article  PubMed  Google Scholar 

  4. Allemand R, Gresset C, Vacher J (1980) Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med 21(2):153–155

    CAS  PubMed  Google Scholar 

  5. Ay MR, Mehranian A, Maleki A et al (2012) Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners. Phys Med (in press)

    Google Scholar 

  6. Bai C, Kinahan PE, Brasse D et al (2003) An analytic study of the effects of attenuation on tumor detection in whole-body PET oncology imaging. J Nucl Med 44(11):1855–1861

    PubMed  Google Scholar 

  7. Ballinger J (2008) Re: planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imaging 35(12):2340

    Article  PubMed  Google Scholar 

  8. Barrett HH, Myers KJ (2003) Foundations of image science. Wiley, New Jersey

    Google Scholar 

  9. Barrett HH, Yao J, Rolland JP et al (1993) Model observers for assessment of image quality. Proc Natl Acad Sci U S A 90(21):9758–9765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28(2):94–108

    Article  PubMed  Google Scholar 

  11. Bonte FJ (1976) Nuclear Medicine Pioneer Citation, 1976: David E Kuhl MD. J Nucl Med 17(6):518–519

    CAS  PubMed  Google Scholar 

  12. Boyd D, Coonrod J, Dehnert J et al (1974) A high pressure xenon proportional chamber for x-ray laminographic reconstruction using fan beam geometry. IEEE Trans Nucl Sci 21:184–187

    Article  CAS  Google Scholar 

  13. Budinger TF (1998) PET instrumentation: what are the limits? Semin Nucl Med 28(3):247–267

    Article  CAS  PubMed  Google Scholar 

  14. Bushberg JT, Seibert JA, Leidholdt EM (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  15. Chen Y, Yang Z, Hu Y et al (2012) Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys Med Biol 57(9):2667–2688

    Article  PubMed  Google Scholar 

  16. Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) -advances in PET imaging technology. J Nucl Med 47(11):1735–1745

    CAS  PubMed  Google Scholar 

  17. Cherry SR, Sorenson JA, Phelps ME (2004) Physics in nuclear medicine, 3rd edn. Elsevier Health Sciences, Philadelphia

    Google Scholar 

  18. Coltman JW (1954) The specification of imaging properties by response to a sine wave. J Opt Soc Am 44:468–469

    Article  Google Scholar 

  19. Conti M (2011) Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 38(6):1147–1157

    Article  PubMed  Google Scholar 

  20. Deutsches Institut für Normung (2012) Publication DIN 6868–157 Image quality assurance in diagnostic X-ray departments – Part 157: RöV acceptance and constancy test of image display systems in theirs environment. Deutsches Institut für Normung, Berlin

    Google Scholar 

  21. Fellgett BP (1958) Equivalent quantum-efficiencies of photographic emulsions. The Observatories, Cambridge

    Google Scholar 

  22. Flohr TG, Bruder H, Stierstorfer K et al (2008) Image reconstruction and image quality evaluation for a dual source CT scanner. Med Phys 35(12):5882–5897

    Article  CAS  PubMed  Google Scholar 

  23. Flohr TG, Leng S, Yu L et al (2009) Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med Phys 36(12):5641–5653

    Article  PubMed  Google Scholar 

  24. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  PubMed  Google Scholar 

  25. Gaa J, Rummeny EJ, Seemann MD (2004) Whole-body imaging with PET/MRI. Eur J Med Res 9(6):309–312

    CAS  PubMed  Google Scholar 

  26. Gambhir SS, Berman DS, Ziffer J et al (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50(4):635–643

    Article  PubMed  Google Scholar 

  27. Green DM, Swets JA (1974) Signal detection theory and psychophysics. Krieger Publishing, New York

    Google Scholar 

  28. Gutierrez D, Monnin P, Valley JF et al (2005) A strategy to qualify the performance of radiographic monitors. Radiat Prot Dosimetry 114(1–3):192–197

    Article  CAS  PubMed  Google Scholar 

  29. Gutierrez D, Schmidt S, Denys A et al (2007) CT-automatic exposure control devices: what are their performances? Nucl Instrum Methods Phys Res A 580:990–995

    Article  CAS  Google Scholar 

  30. Hart D, Wall BF (2002) Radiation exposure of the UK population from medical and dental X-ray examinations. Publication NRPB-W4. National Radiological Protection Board, Chilton

    Google Scholar 

  31. Hasegawa B, Zaidi H (2006) Dual-modality imaging: more than the sum of its components. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Springer, New York

    Google Scholar 

  32. Hofmann M, Pichler B, Schölkopf B et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):93–104

    Article  Google Scholar 

  33. Holte S, Ostertag H, Kesselberg M (1987) A preliminary evaluation of a dual crystal positron camera. J Comput Assist Tomogr 11(4):691–697

    Article  CAS  PubMed  Google Scholar 

  34. Hounsfield GN (1973) Computerized transverse axial scanning (tomography) 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  CAS  PubMed  Google Scholar 

  35. Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174

    Article  PubMed  Google Scholar 

  36. Hurter F, Driffield VC (1890) Photochemical investigations and a new method of determination of the sensitiveness of photographic plates. J Soc Chem Indian 9:455

    Article  Google Scholar 

  37. International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494–522

    Google Scholar 

  38. International Commission on Non-Ionizing Radiation Protection (2004) Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87(2):197–216

    Article  Google Scholar 

  39. International Electrotechnical Commission (2003) Medical electrical equipment – characteristics of digital X-ray imaging devices. Part 1: determination of the detective quantum efficiency. International Electrotechnical Commission, Geneva, 62220–1

    Google Scholar 

  40. Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475–490

    Article  CAS  PubMed  Google Scholar 

  41. Kalender WA, Seissler W, Klotz E et al (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181–183

    CAS  PubMed  Google Scholar 

  42. Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657

    Article  PubMed  Google Scholar 

  43. Kalra MK, Wittram C, Maher MM et al (2003) Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228(1):257–264

    Article  PubMed  Google Scholar 

  44. Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22(8):1613–1623

    Article  PubMed  Google Scholar 

  45. Kimme-Smith C, Wang J, DeBruhl N et al (1994) Mammograms obtained with rhodium vs molybdenum anodes: contrast and dose differences. AJR Am J Roentgenol 162(6):1313–1317

    Article  CAS  PubMed  Google Scholar 

  46. Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33(3):166–179

    Article  PubMed  Google Scholar 

  47. Kuhls-Gilcrist A, Jain A, Bednarek DR et al (2010) Accurate MTF measurement in digital radiography using noise response. Med Phys 37(2):724–735

    Article  PubMed  Google Scholar 

  48. Lcdley RS, Chiro GD, Luessenhop AJ et al (1974) Computerized transaxial X-ray tomography of the human body. Science 186:207–212

    Article  Google Scholar 

  49. Lewellen TK (1998) Time-of-flight PET. Semin Nucl Med 28(3):268–275

    Article  CAS  PubMed  Google Scholar 

  50. Mariani G, Bruselli L, Duatti A et al (2008) Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 35(8):1560–1565

    Article  PubMed  Google Scholar 

  51. Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology 254(1):145–153

    Article  PubMed  Google Scholar 

  52. Matsumoto Y, Masuda T, Imada N et al (2012) Examination of the chest computed tomography scan condition optimization in consideration of the influence of the position of the arms. Nihon Hoshasen Gijutsu Gakkai Zasshi 68(7):851–856

    Article  PubMed  Google Scholar 

  53. Melcher CL, Schweitzer JS (1992) Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 39:502–505

    Article  CAS  Google Scholar 

  54. Metz C (2008) ROC analysis in medical imaging: a tutorial review of the literature. Radiol Phys Technol 1(1):2–12

    Article  PubMed  Google Scholar 

  55. Metz CE (1986) ROC methodology in radiologic imaging. Invest Radiol 21(9):720–733

    Article  CAS  PubMed  Google Scholar 

  56. Monnin P, Gutierrez D, Bulling S et al (2007) A comparison of the performance of digital mammography systems. Med Phys 34(3):906–914

    Article  CAS  PubMed  Google Scholar 

  57. Monnin P, Gutierrez D, Bulling S et al (2005) A comparison of the imaging characteristics of the new Kodak Hyper Speed G film with the current T-MAT G/RA film and the CR 9000 system. Phys Med Biol 50(19):4541–4552

    Article  CAS  PubMed  Google Scholar 

  58. Morgan RH, Hodges PC (1945) An evaluation of automatic exposure control equipment in photofluorography. Radiology 45:588–593

    CAS  PubMed  Google Scholar 

  59. Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci 50(5):1325–1330

    Article  Google Scholar 

  60. Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25(12):123009

    Article  Google Scholar 

  61. Pichler BJ, Wehrl HF, Kolb A et al (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208

    Article  PubMed Central  PubMed  Google Scholar 

  62. Radon J (1917) On the determination of functions from their integrals along certain manifolds. Ber Saechs Akad Wiss 69:262–277

    Google Scholar 

  63. Reader AJ, Zaidi H (2007) Advances in PET image reconstruction. PET Clin 2:173–190

    Article  Google Scholar 

  64. Rhodes DJ, Hruska CB, Phillips SW et al (2011) Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology 258(1):106–118

    Article  PubMed  Google Scholar 

  65. Rose A (1948) The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am 38:196–208

    Article  CAS  PubMed  Google Scholar 

  66. Rossmann K, Wiley BE (1970) The central problem in the study of radiographic image quality. Radiology 96(1):113–118

    CAS  PubMed  Google Scholar 

  67. Samei E, Badano A, Chakraborty D et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225

    Article  PubMed  Google Scholar 

  68. Samei E, Flynn MJ, Reimann DA (1998) A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys 25(1):102–113

    Article  CAS  PubMed  Google Scholar 

  69. Schlyer D, Rooney W, Woody C et al (2004) Development of a simultaneous PET/MRI scanner. In: IEEE Nucl Sci Symp Conf Rec 3419–3421

    Google Scholar 

  70. Seguchi S, Aoyama T, Koyama S et al (2010) Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner. Med Phys 37(11):5579–5585

    Article  PubMed  Google Scholar 

  71. Shaw R (1963) The equivalent quantum efficiency of the photographic process. J Photogr Sci 11:199–204

    CAS  Google Scholar 

  72. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086

    Article  PubMed  Google Scholar 

  73. Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75:S24–S30

    PubMed  Google Scholar 

  74. Verdun FR, Theumann N, Poletti PA (2006) Impact of the introduction of 16-row MDCT on image quality and patient dose: phantom study and multi-centre survey. Eur Radiol 16(12):2866–2874

    Article  PubMed  Google Scholar 

  75. Wagner RF (1978) Decision theory and the signal-to-noise ratio of Otto Schade. Photogr Sci Eng 22:41–46

    Google Scholar 

  76. Wagner RF, Weaver KE (1972) An assortment of image quality indexes for radiographic film-screen combinations – can they be resolved? Appl Opt Instr Med Proc SPIE 35:83–94

    Google Scholar 

  77. Watson CC, Casey ME, Bendriem B et al (2005) Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med 46(11):1825–1834

    PubMed  Google Scholar 

  78. Webb S (1992) The physics of medical imaging. Institute of Physics, London

    Google Scholar 

  79. Weber MJ, Monchamp RR (1973) Luminescence of Bi4Ge3O12: spectral and decay properties. J Appl Phys 44:5495–5499

    Article  CAS  Google Scholar 

  80. Xia T, Alessio AM, De Man B et al (2012) Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol 57(2):309–328

    Article  PubMed Central  PubMed  Google Scholar 

  81. Xu J, Mahesh M, Tsui BM (2009) Is iterative reconstruction ready for MDCT? J Am Coll Radiol 6(4):274–276

    Article  PubMed Central  PubMed  Google Scholar 

  82. Zaidi H (ed) (2006) Quantitative analysis in nuclear medicine imaging. Springer, New York

    Google Scholar 

  83. Zaidi H (2007) Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244(3):639–642

    Article  PubMed  Google Scholar 

  84. Zaidi H (2007) Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? Eur J Nucl Med Mol Imaging 34(6):815–818

    Article  PubMed  Google Scholar 

  85. Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689

    Article  PubMed  Google Scholar 

  86. Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44(2):291–315

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation under grant SNSF 31003A-135576, Geneva Cancer League, the Indo-Swiss Joint Research Programme ISJRP 138866, and Geneva University Hospital under grant PRD 11-II-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gutierrez, D.F., Zaidi, H. (2014). Advances in Technological Design to Optimize Exposure and Improve Image Quality. In: Lau, L., Ng, KH. (eds) Radiological Safety and Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7256-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7256-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7255-7

  • Online ISBN: 978-94-007-7256-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics