Skip to main content

Principles of Energetics and Stability in Legged Locomotion

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

People are skilled walkers and runners. We move with economy, agility, and speed and can do so even while we travel through our rough and variable world. Present-day humanoid robots are certainly much less capable than humans at accomplishing the same locomotor tasks [1]. One potential path to improving the design and control of robots is to draw inspiration and guidance from biology. That is, we may be able to build more capable robots if we better understand how people move. One argument against this possibility is that humans and robots are comprised of fundamentally different components. Where robots are built using metals, encoders, wires, computers, magnetic motors, and batteries, humans have evolved to use bone, sensory cells, nerves, brains, muscles, and food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. C.G. Atkeson, B.P.W. Babu, N. Banerjee, D. Berenson, C.P. Bove, X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J.P. Graff, P. He, A. Jaeger, J. Kim, K. Knoedler, L. Li, C. Liu, X. Long, T. Padir, F. Polido, G.G. Tighe, X. Xinjilefu, No falls, no resets: reliable humanoid behavior in the DARPA robotics challenge, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), (IEEE, 2015), pp. 623–630

    Google Scholar 

  2. D. Marr, Vision: A Computational Approach (MIT Press, Cambridge, 1982)

    Google Scholar 

  3. S. Vogel, Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (WW Norton & Company, New York, 1998)

    Google Scholar 

  4. C.V. Ward, Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Am. J. Phys. Anthropol. 119, 185–215 (2002)

    Article  Google Scholar 

  5. J. Nichols, The Origin and Dispersal of Languages: Linguistic Evidence (University of California Press, San Francisco, 1998)

    Google Scholar 

  6. R.W. Wrangham, Catching Fire (Profile Books, London, 2009)

    Google Scholar 

  7. C.O. Lovejoy, The natural history of human gait and posture. Gait Posture 21, 113–124 (2005)

    Article  Google Scholar 

  8. D.M. Bramble, D.E. Lieberman, Endurance running and the evolution of Homo. Nature 432, 345–352 (2004)

    Article  Google Scholar 

  9. K.E. Adolph, W.G. Cole, M. Komati, J.S. Garciaguirre, D. Badaly, J.M. Lingeman, G.L.Y. Chan, R.B. Sotsky, How do you learn to walk? Thousands of steps and dozens of falls per day. Psychol. Sci. 23, 1387–1394 (2012)

    Article  Google Scholar 

  10. J.L. O’Loughlin, Y. Robitaille, J.F. Boivin, S. Suissa, Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am. J. Epidemiol. 137, 342–354 (1993)

    Article  Google Scholar 

  11. M.S. Orendurff, J.A. Schoen, G.C. Bernatz, A.D. Segal, G.K. Klute, How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008)

    Article  Google Scholar 

  12. D.H. Sutherland, R. Olshen, L. Cooper, S.L. Woo, The development of mature gait. J. Bone Joint Surg. Am. 62, 336–353 (1980)

    Article  Google Scholar 

  13. D.H. Sutherland, The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 14, 61–70 (2001)

    Article  Google Scholar 

  14. J.A. Levine, Measurement of energy expenditure. Public Health Nutr. 8, 1123–1132 (2005)

    Article  Google Scholar 

  15. C. Tudor-Locke, C.L. Craig, Y. Aoyagi, R.C. Bell, K.A. Croteau, I. De Bourdeaudhuij, B. Ewald, A.W. Gardner, Y. Hatano, L.D. Lutes, S.M. Matsudo, F.A. Ramirez-Marrero, L.Q. Rogers, D.A. Rowe, M.D. Schmidt, M.A. Tully, S.N. Blair, How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 8, 80 (2011)

    Article  Google Scholar 

  16. G.A. Brooks, T.D. Fahey, T.P. White, K.M. Baldwin, Exercise Physiology (Mountain View, 1996)

    Google Scholar 

  17. J.M. Brockway, Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 41, 463–471 (1987)

    Google Scholar 

  18. G.A. Cavagna, N.C. Heglund, C.R. Taylor, Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Phys. 233, R243–R261 (1977)

    Google Scholar 

  19. R. Kram, C.R. Taylor, Energetics of running: a new perspective. Nature 346, 265–267 (1990)

    Article  Google Scholar 

  20. R. Margaria, P. Cerretelli, P. Aghemo, G. Sassi, Energy cost of running. J. Appl. Physiol. 18, 367–370 (1963)

    Google Scholar 

  21. R.C. Browning, R. Kram, Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes. Res. 13, 891–899 (2005)

    Article  Google Scholar 

  22. V.A. Tucker, The energetic cost of moving about. Am. Sci. 63, 413–419 (1975)

    Google Scholar 

  23. S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  24. B.R. Umberger, P.E. Martin, Mechanical power and efficiency of level walking with different stride rates. J. Exp. Biol. 210, 3255–3265 (2007)

    Article  Google Scholar 

  25. J.M. Donelan, R. Kram, A.D. Kuo, Mechanical and metabolic determinants of the preferred step width in human walking. Proc. Biol. Sci. 268, 1985–1992 (2001)

    Article  Google Scholar 

  26. R.L. Waters, S. Mulroy, The energy expenditure of normal and pathologic gait. Gait Posture 9, 207–231 (1999)

    Article  Google Scholar 

  27. N.H. Molen, R.H. Rozendal, W. Boon, Graphic representation of the relationship between oxygen-consumption and characteristics of normal gait of the human male. Proc. K. Ned. Akad. Wet. C 75, 305–314 (1972)

    Google Scholar 

  28. H. Elftman, Biomechanics of muscle with particular application to studies of gait. J. Bone Joint Surg. Am. 48, 363–377 (1966)

    Article  Google Scholar 

  29. E. Atzler, R. Herbst, Arbeitsphysiologische Studien. Pflügers Arch. 215, 291–328 (1927)

    Article  Google Scholar 

  30. H.J. Ralston, Energy-speed relation and optimal speed during level walking. Int. Z. Angew. Physiol. 17, 277–283 (1958)

    Google Scholar 

  31. A.E. Minetti, L.P. Ardigò, F. Saibene, The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Acta Physiol. Scand. 150, 315–323 (1994)

    Article  Google Scholar 

  32. A. Hreljac, Preferred and energetically optimal gait transition speeds in human locomotion. Med. Sci. Sports Exerc. 25, 1158–1162 (1993)

    Article  Google Scholar 

  33. A. Hreljac, Determinants of the gait transition speed during human locomotion: kinematic factors. J. Biomech. 28, 669–677 (1995)

    Article  Google Scholar 

  34. J.E. Bertram, A. Ruina, Multiple walking speed-frequency relations are predicted by constrained optimization. J. Theor. Biol. 209, 445–453 (2001)

    Article  Google Scholar 

  35. P.R. Cavanagh, K.R. Williams, The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 14, 30–35 (1982)

    Article  Google Scholar 

  36. A.D. Kuo, J.M. Donelan, Dynamic principles of gait and their clinical implications. Phys. Ther. 90, 157–174 (2010)

    Article  Google Scholar 

  37. R.M. Alexander, Optimization of structure and movement of the legs of animals. J. Biomech. 26(Suppl 1), 1–6 (1993)

    Article  Google Scholar 

  38. J.A. Levine, Non-exercise activity thermogenesis (NEAT). Best Pract. Res. Clin. Endocrinol. Metab. 16, 679–702 (2002)

    Article  Google Scholar 

  39. N. Seethapathi, M. Srinivasan, The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates. Biol. Lett. 11, 20150486 (2015)

    Article  Google Scholar 

  40. T. Garland Jr., Scaling the ecological cost of transport to body mass in terrestrial mammals. Am. Nat. 121, 571–587 (1983)

    Article  Google Scholar 

  41. D. DeJaeger, P.A. Willems, N.C. Heglund, The energy cost of walking in children. Pflügers Arch. 441, 538–543 (2001)

    Article  Google Scholar 

  42. J.C. Selinger, S.M. O’Connor, J.D. Wong, J.M. Donelan, Humans can continuously optimize energetic cost during walking. Curr. Biol. 25, 2452–2456 (2015)

    Article  Google Scholar 

  43. G.A. Cavagna, H. Thys, A. Zamboni, The sources of external work in level walking and running. J. Physiol. Lond. 262, 639–657 (1976)

    Article  Google Scholar 

  44. A.E. Minetti, R.M. Alexander, A theory of metabolic costs for bipedal gaits. J. Theor. Biol. 186, 467–476 (1997)

    Article  Google Scholar 

  45. R.M. Alexander, Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991)

    Google Scholar 

  46. C.R. Lee, C.T. Farley, Determinants of the center of mass trajectory in human walking and running. J. Exp. Biol. 201, 2935–2944 (1998)

    Google Scholar 

  47. S. Mochon, T.A. McMahon, Ballistic walking. J. Biomech. 13, 49–57 (1980)

    Article  MATH  Google Scholar 

  48. J.V. Basmajian, The human bicycle: an ultimate biological convenience. Orthop. Clin. North Am. 7, 1027–1029 (1976)

    Google Scholar 

  49. T.J. Roberts, E. Azizi, Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 214, 353–361 (2011)

    Article  Google Scholar 

  50. N.C. Heglund, M.A. Fedak, C.R. Taylor, G.A. Cavagna, Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 57–66 (1982)

    Google Scholar 

  51. D.P. Ferris, M. Louie, C.T. Farley, Running in the real world: adjusting leg stiffness for different surfaces. Proc. Biol. Sci. 265, 989–994 (1998)

    Article  Google Scholar 

  52. H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running. Proc. Biol. Sci. 273, 2861–2867 (2006)

    Article  Google Scholar 

  53. T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)

    Article  Google Scholar 

  54. H. Geyer, A. Seyfarth, R. Blickhan, Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232, 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  55. M.H. Dickinson, C.T. Farley, R.J. Full, M.A. Koehl, R. Kram, S. Lehman, How animals move: an integrative view. Science 288, 100–106 (2000)

    Article  Google Scholar 

  56. T. McGeer, Passive bipedal running. Proc. Biol. Sci. 240, 107–134 (1990)

    Article  Google Scholar 

  57. M. Raibert, M. Chepponis, Running on four legs as though they were one. IEEE Robot Automat. 2, 70–82 (1986)

    Article  Google Scholar 

  58. M. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006)

    Article  Google Scholar 

  59. I. Hunter, G.A. Smith, Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur. J. Appl. Physiol. 100, 653–661 (2007)

    Article  Google Scholar 

  60. J.L. Mayhew, Oxygen cost and energy expenditure of running in trained runners. Br. J. Sports Med. 11, 116–121 (1977)

    Article  Google Scholar 

  61. J.D. Ortega, C.T. Farley, Minimizing center of mass vertical movement increases metabolic cost in walking. J. Appl. Physiol. 99, 2099–2107 (2005)

    Article  Google Scholar 

  62. K.E. Gordon, D.P. Ferris, A.D. Kuo, Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch. Phys. Med. Rehabil. 90, 136–144 (2009)

    Article  Google Scholar 

  63. W.O. Fenn, Work against gravity and work due to velocity changes in running. Am. J. Phys. 93, 433–462 (1930)

    Google Scholar 

  64. W.O. Fenn, The relationship between the work performed and the energy liberated in muscular contraction. J. Physiol. 58, 373–395 (1924)

    Article  Google Scholar 

  65. A.D. Kuo, A simple model of bipedal walking predicts the preferred speed-step length relationship. J. Biomech. Eng. 123, 264–269 (2001)

    Article  Google Scholar 

  66. J.M. Donelan, R. Kram, A.D. Kuo, Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol. 205, 3717–3727 (2002)

    Google Scholar 

  67. A. Ruina, J.E.A. Bertram, M. Srinivasan, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)

    Article  MathSciNet  Google Scholar 

  68. J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35, 117–124 (2002)

    Article  Google Scholar 

  69. A.D. Kuo, J.M. Donelan, A. Ruina, Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev. 33, 88–97 (2005)

    Article  Google Scholar 

  70. C.H. Soo, J.M. Donelan, Mechanics and energetics of step-to-step transitions isolated from human walking. J. Exp. Biol. 213, 4265–4271 (2010)

    Article  Google Scholar 

  71. D. Wezenberg, A.G. Cutti, A. Bruno, H. Houdijk, Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost. J. Rehabil. Res. Dev. 51, 1579–1590 (2014)

    Article  Google Scholar 

  72. R.L. Waters, J. Perry, D. Antonelli, H. Hislop, Energy cost of walking of amputees: the influence of level of amputation. J. Bone Joint Surg. Am. 58, 42–46 (1976)

    Article  Google Scholar 

  73. J.M. Caputo, S.H. Collins, Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Sci. Rep. 4(7213) (2014)

    Google Scholar 

  74. C.N. Maganaris, J.P. Paul, Tensile properties of the in vivo human gastrocnemius tendon. J. Biomech. 35, 1639–1646 (2002)

    Article  Google Scholar 

  75. A.A. Biewener, T.J. Roberts, Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport Sci. Rev. 28, 99 (2000)

    Google Scholar 

  76. T.J. Roberts, R.L. Marsh, P.G. Weyand, C.R. Taylor, Muscular force in running turkeys: the economy of minimizing work. Science 275, 1113–1115 (1997)

    Article  Google Scholar 

  77. G.A. Lichtwark, K. Bougoulias, A.M. Wilson, Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 40, 157–164 (2007)

    Article  Google Scholar 

  78. A. Lai, G.A. Lichtwark, A.G. Schache, Y.-C. Lin, N.A.T. Brown, M.G. Pandy, In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 118, 1266–1275 (2015)

    Article  Google Scholar 

  79. K. Hilber, Y.B. Sun, M. Irving, Effects of sarcomere length and temperature on the rate of ATP utilisation by rabbit psoas muscle fibres. J. Physiol. Lond. 531, 771–780 (2001)

    Article  Google Scholar 

  80. M.C. Hogan, E. Ingham, S.S. Kurdak, Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. Am. J. Phys. 274, E397–E402 (1998)

    Google Scholar 

  81. J.A. Rall, Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc. Sport Sci. Rev. 13, 33–74 (1985)

    Google Scholar 

  82. D. Chasiotis, M. Bergström, E. Hultman, ATP utilization and force during intermittent and continuous muscle contractions. J. Appl. Physiol. 63, 167–174 (1987)

    Article  Google Scholar 

  83. M. Bergström, E. Hultman, Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J. Appl. Physiol. 65, 1500–1505 (1988)

    Article  Google Scholar 

  84. R.L. Marsh, D.J. Ellerby, J.A. Carr, H.T. Henry, C.I. Buchanan, Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303, 80–83 (2004)

    Article  Google Scholar 

  85. J.R. Modica, R. Kram, Metabolic energy and muscular activity required for leg swing in running. J. Appl. Physiol. 98, 2126–2131 (2005)

    Article  Google Scholar 

  86. C.T. Farley, O. González, Leg stiffness and stride frequency in human running. J. Biomech. 29, 181–186 (1996)

    Article  Google Scholar 

  87. W. Platzer, Color Atlas of Human Anatomy Locomotor System. Color Atlas of Human Anatomy Locomotor System, 5th edn. (Thieme, 2004)

    Google Scholar 

  88. P.G. Adamczyk, S.H. Collins, A.D. Kuo, The advantages of a rolling foot in human walking. J. Exp. Biol. 209, 3953–3963 (2006)

    Article  Google Scholar 

  89. P.G. Weyand, D.B. Sternlight, M.J. Bellizzi, S. Wright, Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89, 1991–1999 (2000)

    Google Scholar 

  90. R.F. Ker, M.B. Bennett, S.R. Bibby, R.C. Kester, R.M. Alexander, The spring in the arch of the human foot. Nature 325, 147–149 (1987)

    Article  Google Scholar 

  91. S.S.M. Lee, S.J. Piazza, Built for speed: musculoskeletal structure and sprinting ability. J. Exp. Biol. 212, 3700–3707 (2009)

    Article  Google Scholar 

  92. M.N. Scholz, M.F. Bobbert, A.J. van Soest, J.R. Clark, J. van Heerden, Running biomechanics: shorter heels, better economy. J. Exp. Biol. 211, 3266–3271 (2008)

    Article  Google Scholar 

  93. S.N. Robinovitch, S.L. Evans, J. Minns, A.C. Laing, P. Kannus, P.A. Cripton, S. Derler, S.J. Birge, D. Plant, I.D. Cameron, D.P. Kiel, J. Howland, K. Khan, J.B. Lauritzen, Hip protectors: recommendations for biomechanical testing – an international consensus statement (part I), in Osteoporos International, (Springer, 2009), pp. 1977–1988

    Google Scholar 

  94. L. Schwickert, C. Becker, U. Lindemann, C. Maréchal, A. Bourke, L. Chiari, J.L. Helbostad, W. Zijlstra, K. Aminian, C. Todd, S. Bandinelli, J. Klenk, FARSEEING Consortium and the FARSEEING Meta Database Consensus Group, Fall detection with body-worn sensors: a systematic review. Z. Gerontol. Geriatr. 46, 706–719 (2013)

    Article  Google Scholar 

  95. S. Bohm, L. Mademli, F. Mersmann, A. Arampatzis, Predictive and reactive locomotor adaptability in healthy elderly: a systematic review and meta-analysis. Sports Med. 45, 1759–1777 (2015)

    Article  Google Scholar 

  96. D. Burke, S.C. Gandevia, B. McKeon, The afferent volleys responsible for spinal proprioceptive reflexes in man. J. Physiol. Lond. 339, 535–552 (1983)

    Article  Google Scholar 

  97. C.D. Marsden, P.A. Merton, H.B. Morton, Stretch reflex and servo action in a variety of human muscles. J. Physiol. Lond. 259, 531–560 (1976)

    Article  Google Scholar 

  98. V. Dietz, D. Schmidtbleicher, J. Noth, Neuronal mechanisms of human locomotion. J. Neurophysiol. 42, 1212–1222 (1979)

    Google Scholar 

  99. S. Grillner, The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol. Scand. 86, 92–108 (1972)

    Article  Google Scholar 

  100. A.D. Craig, How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002)

    Article  Google Scholar 

  101. N. Hogan, D. Sternad, Dynamic primitives of motor behavior. Biol. Cybern. 106, 727–739 (2012)

    Article  MathSciNet  Google Scholar 

  102. H.L. More, J.R. Hutchinson, D.F. Collins, D.J. Weber, S.K.H. Aung, J.M. Donelan, Scaling of sensorimotor control in terrestrial mammals. Proc. Biol. Sci. 277, 3563–3568 (2010)

    Article  Google Scholar 

  103. A. Rossi, B. Decchi, Flexibility of lower limb reflex responses to painful cutaneous stimulation in standing humans: evidence of load-dependent modulation. J. Physiol. Lond. 481(Pt 2), 521–532 (1994)

    Article  Google Scholar 

  104. A. Prochazka, Sensorimotor gain control: a basic strategy of motor systems? Prog. Neurobiol. 33, 281–307 (1989)

    Article  Google Scholar 

  105. A. Prochazka, F. Clarac, G.E. Loeb, J.C. Rothwell, J.R. Wolpaw, What do reflex and voluntary mean? Modern views on an ancient debate. Exp. Brain Res. 130, 417–432 (2000)

    Article  Google Scholar 

  106. E.P. Zehr, R.B. Stein, What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58, 185–205 (1999)

    Article  Google Scholar 

  107. V. Dietz, G. Colombo, Influence of body load on the gait pattern in Parkinson's disease. Mov. Disord. 13, 255–261 (1998)

    Article  Google Scholar 

  108. T. Sinkjaer, J.B. Andersen, M. Ladouceur, L.O. Christensen, J.B. Nielsen, Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. (Lond) 523 Pt 3, 817–827 (2000)

    Article  Google Scholar 

  109. V. Dietz, S.J. Harkema, Locomotor activity in spinal cord-injured persons. J. Appl. Physiol. 96, 1954–1960 (2004)

    Article  Google Scholar 

  110. V. Dietz, A. Gollhofer, M. Kleiber, M. Trippel, Regulation of bipedal stance: dependency on “load” receptors. Exp. Brain Res. 89, 229–231 (1992)

    Article  Google Scholar 

  111. H.W. Van de Crommert, M. Faist, W. Berger, J. Duysens, Biceps femoris tendon jerk reflexes are enhanced at the end of the swing phase in humans. Brain Res. 734, 341–344 (1996)

    Article  Google Scholar 

  112. H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–273 (2010)

    Article  Google Scholar 

  113. S. Song, H. Geyer, A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. Lond. 593, 3493–3511 (2015)

    Article  Google Scholar 

  114. I.E. Brown, G.E. Loeb, A reductionist approach to creating and using neuromusculoskeletal models, in Biomechanics and Neural Control of Posture and Movement, (Springer, New York, 2000), pp. 148–163

    Chapter  Google Scholar 

  115. A.J. van Soest, M.F. Bobbert, The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69, 195–204 (1993)

    Article  Google Scholar 

  116. M.M. van der Krogt, W.W. de Graaf, C.T. Farley, C.T. Moritz, L.J. Richard Casius, M.F. Bobbert, Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. J. Appl. Physiol. 107, 801–808 (2009)

    Article  Google Scholar 

  117. C.T. Moritz, C.T. Farley, Passive dynamics change leg mechanics for an unexpected surface during human hopping. J. Appl. Physiol. 97, 1313–1322 (2004)

    Article  Google Scholar 

  118. C.T. Moritz, C.T. Farley, Human hoppers compensate for simultaneous changes in surface compression and damping. J. Biomech. 39, 1030–1038 (2006)

    Article  Google Scholar 

  119. C.T. Moritz, C.T. Farley, Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. J. Exp. Biol. 208, 939–949 (2005)

    Article  Google Scholar 

  120. D.P. Ferris, K. Liang, C.T. Farley, Runners adjust leg stiffness for their first step on a new running surface. J. Biomech. 32, 787–794 (1999)

    Article  Google Scholar 

  121. M. Garcia, A. Chatterjee, A. Ruina, M. Coleman, The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120, 281–288 (1998)

    Article  Google Scholar 

  122. A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model. Proc. ASME Des. Eng. 6, 531–539 (2001)

    Google Scholar 

  123. C.E. Bauby, A.D. Kuo, Active control of lateral balance in human walking. J. Biomech. 33, 1433–1440 (2000)

    Article  Google Scholar 

  124. S.M. O’Connor, A.D. Kuo, Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102, 1411–1419 (2009)

    Article  Google Scholar 

  125. A.D. Kuo, Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18, 917–930 (1999)

    Article  Google Scholar 

  126. T. Libby, T.Y. Moore, E. Chang-Siu, D. Li, D.J. Cohen, A. Jusufi, R.J. Full, Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481, 181–184 (2012)

    Article  Google Scholar 

  127. M. Pijnappels, I. Kingma, D. Wezenberg, G. Reurink, J.H. van Dieën, Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp. Brain Res. 201, 689–699 (2010)

    Article  Google Scholar 

  128. S.M. O’Connor, X. HZ, A.D. Kuo, Energetic cost of walking with increased step variability. Gait Posture 36, 102–107 (2012)

    Article  Google Scholar 

  129. J.C. Dean, N.B. Alexander, A.D. Kuo, The effect of lateral stabilization on walking in young and old adults. I.E.E.E. Trans. Biomed. Eng. 54, 1919–1926 (2007)

    Article  Google Scholar 

  130. T. Ijmker, H. Houdijk, C.J.C. Lamoth, P.J. Beek, L.H.V. van der Woude, Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed. J. Biomech. 46, 2109–2114 (2013)

    Article  Google Scholar 

  131. P. Zaytsev, S.J. Hasaneini, A. Ruina, Two steps is enough: no need to plan far ahead for walking balance, in IEEE International Conference on Robotics and Automation, (IEEE, 2015), pp. 6295–6300

    Google Scholar 

  132. A.L. Hof, S.M. Vermerris, W.A. Gjaltema, Balance responses to lateral perturbations in human treadmill walking. J. Exp. Biol. 213, 2655–2664 (2010)

    Article  Google Scholar 

  133. P.F. Tang, M.H. Woollacott, R.K. Chong, Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp. Brain Res. 119, 141–152 (1998)

    Article  Google Scholar 

  134. A.E. Patla, J.N. Vickers, Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 8, 3661–3665 (1997)

    Article  Google Scholar 

  135. J. Matthis, S. Barton, B. Fajen, Visual control of precise foot placement when walking over complex terrain. J. Vis. 13, 121–121 (2013)

    Article  Google Scholar 

  136. M. Raibert, Dynamic Legged Locomotion, 1st edn. (MIT Press, 1987)

    Google Scholar 

  137. A. Seyfarth, H. Geyer, H. Herr, Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)

    Article  Google Scholar 

  138. M. Haberland, J. Karssen, S. Kim, The effect of swing leg retraction on running energy efficiency, in IEEE International Conference on Robotics and Automation, (Shanghai, 2011)

    Google Scholar 

  139. M. Haberland, J.G.D. Karssen, S. Kim, M. Wisse, The effect of swing leg retraction on running energy efficiency, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), (IEEE, n.d.), pp. 3957–3962

    Google Scholar 

  140. J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33, 2137–2155 (2015)

    Article  Google Scholar 

  141. M.A. Daley, Biomechanics: running over uneven terrain is a no-brainer. Curr. Biol. 18, R1064–R1066 (2008)

    Article  Google Scholar 

  142. S. Grimmer, M. Ernst, M. Günther, R. Blickhan, Running on uneven ground: leg adjustment to vertical steps and self-stability. J. Exp. Biol. 211, 2989–3000 (2008)

    Article  Google Scholar 

  143. T.A. McMahon, G.C. Cheng, The mechanics of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)

    Article  Google Scholar 

  144. C.T. Farley, D.P. Ferris, Biomechanics of walking and running: center of mass movements to muscle action. Exerc. Sport Sci. Rev. 26, 253–285 (1998)

    Article  Google Scholar 

  145. M. Raibert, K. Blankespoor, G. Nelson, R. Playter, Bigdog, the rough-terrain quadruped robot, in Proceedings of the 17th IFAC World Congress, (2008)

    Google Scholar 

  146. J.W. Hurst, J.E. Chestnutt, A.A. Rizzi, Design and philosophy of the bimasc, a highly dynamic biped, in IEEE Int Conf Robot Autom, (Rome, 2007), pp. 1863–1868

    Google Scholar 

  147. P.A. Bhounsule, J. Cortell, A. Ruina, Design and control of ranger: an energy-efficient, dynamic walking robot, in Adaptive Mobile Robotics, (World Scientific, 2012), pp. 441–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wong, J.D., Maxwell Donelan, J. (2017). Principles of Energetics and Stability in Legged Locomotion. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics