Skip to main content

Historical Perspective and Scope

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 507 Accesses

Abstract

This chapter describes a history of the kinematics and dynamics in robotics. First, the progress of four basic computation schemes, namely, forward kinematics, inverse kinematics, forward dynamics, inverse dynamics, and identification of mass properties are briefly reviewed from the viewpoint of both theory and algorithm. Then, some particular issues for anthropomorphic systems are summarized. Mobile robots are commonly modeled as a floating-base kinematic chain, which was first adopted in space robotics. It explains the relationship between the net external forces and the total momentum of the system and shows an importance of the contact dynamics, which is also addressed in the following section, in order to exploit the structure-varying nature. Some representative ground references that are helpful for dealing with contact constraint in a context of control are introduced. Reduced-order models to abstract the dominant dynamics of the system in an intuitive and comprehensive manner are also presented with the techniques for reciprocal mapping of motion and input with the full-scale model. Finally, possible future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 23, 215–221 (1955)

    Google Scholar 

  2. D.E. Whitney, Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)

    Google Scholar 

  3. D.E. Whitney, The mathematics of coordinated control of prosthetic arms and manipulators. Trans. ASME J. Dyn. Syst. Meas. Control 94(4), 303–309 (1972)

    Google Scholar 

  4. A.A. Maciejewski, C.A. Klein, Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(3), 109–117 (1985)

    Google Scholar 

  5. C.W. Wampler II, Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. SMC 16(1), 93–101 (1986)

    Google Scholar 

  6. Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with singularity robustness for robot manipulator control. Trans. ASME J. Dyn. Syst. Meas. Control 108, 163–171 (1986)

    Google Scholar 

  7. Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)

    Google Scholar 

  8. J.J. Uicker, Dynamic force analysis of spatial linkages. J. Appl. Mech. 34(2), 418–424 (1967)

    Google Scholar 

  9. M.E. Kahn, The near-minimum-time control of open-loop articulated kinematic chains. Ph.D. thesis, Stanford University, 1969

    Google Scholar 

  10. J. Stepanenko, M. Vukobratović, Dynamics of articulated open-chain active mechanisms. Math. Biosci. 28(1–2), 137–170 (1976)

    Google Scholar 

  11. D.E. Orin, R.B. McGhee, M. Vukobratović, G. Hartoch, Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods. Math. Biosci. 43(1–2), 107–130 (1979)

    Google Scholar 

  12. J.Y.S. Luh, M.W. Walker, R.P.C. Paul, On-line computational scheme for mechanical manipulators. Trans. ASME J. Dyn. Syst. Meas. Control 102, 69–76 (1980)

    Google Scholar 

  13. J.M. Hollerbach, A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC 10(11), 730–736 (1980)

    Google Scholar 

  14. M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robotic mechanisms. Trans. ASME J. Dyn. Syst. Meas. Control 104, 205–211 (1982)

    Google Scholar 

  15. R. Featherstone, The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Google Scholar 

  16. A. Fijany, I. Sharf, G.M.T. D’Eleuterio, Parallel \(O(\log N)\) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robot. Autom. 11(3), 389–400 (1995)

    Google Scholar 

  17. R. Featherstone, A divide-and conquer articulated-body algorithm for parallel \(O(\log (n))\) calculation of rigid-body dynamics. Int. J. Robot. Res. 18(9), 867–892 (1999)

    Google Scholar 

  18. H. Mayeda, K. Osuka, A. Kangawa, A new identification method for serial manipulator arm, in Proceedings of 9th IFAC World Congress, 1984, pp. 2429–2434

    Google Scholar 

  19. C.G. Atkeson, C.H. An, J.M. Hollerbach, Estimation of inertial parameters of manipulator loads and links. Int. J. Robot. Res. 5(3), 101–119 (1986)

    Google Scholar 

  20. M. Vukobratović, J. Stepanenko, Mathematical models of general anthropomorphic systems. Math. Biosci. 17(3–4), 191–242 (1973)

    Google Scholar 

  21. Z. Vafa, S. Dubowsky, On the dynamics of manipulators in space using the virtual manipulator approach, in Proceedings of the 1987 IEEE International Conference on Robotics & Automation, 1987, pp. 579–585

    Google Scholar 

  22. Y. Umetani, K. Yoshida, Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Trans. Robot. Autom. 5(3), 303–314 (1989)

    Google Scholar 

  23. K. Yoshida, D.N. Nenchev, A general formulation of under-actuated manipulator systems, in Proceedings of The Eighth International Symposium of Robotics Research, 1997, pp. 33–44

    Google Scholar 

  24. Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–41 (1998)

    Google Scholar 

  25. Y. Nakamura, K. Yamane, Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. Robot. Autom. 16(2), 124–134 (2000)

    Google Scholar 

  26. P. Lötstedt, Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984)

    Google Scholar 

  27. M. Anitescu, F.A. Potra, Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems, reports on computational mathematics, The University of Iowa, No. 93, 1996

    Google Scholar 

  28. D.E. Stewart, J.C. Trinkle, An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Google Scholar 

  29. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa, A universal stability criterion of the foot contact of legged robots – adios ZMP, in Proceedings of the 2006 IEEE International Conference on Robotics & Automation, 2006, pp. 1976–1938

    Google Scholar 

  30. R.B. McGhee, A.A. Frank, On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  31. M. Vukobratović, J. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15(1), 1–37 (1972)

    Article  MATH  Google Scholar 

  32. K. Mitobe, G. Capi, Y. Nasu, Control of walking robots based on manipulation of the zero moment point. Robotica 18(6), 651–657 (2000)

    Article  Google Scholar 

  33. M. Popovic, A. Goswami, H.M. Herr, Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)

    Article  Google Scholar 

  34. D.C. Witt, A feasibility study on automatically-controlled powered lower-limb prostheses. Technical report of University of Oxford, 1970

    Google Scholar 

  35. F. Gubina, H. Hemami, R.B. McGhee, On the dynamic stability of biped locomotion. IEEE Trans. Biomed. Eng. BME 21(2), 102–108 (1974)

    Article  Google Scholar 

  36. F. Miyazaki, S. Arimoto, A control theoretic study on dynamical biped locomotion. Trans. ASME J. Dyn. Syst. Meas. Control 102, 233–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Kajita, T. Yamaura, A. Kobayashi, Dynamic walking control of a biped robot along a potential energy conserving orbit. IEEE Trans. Robot. Autom. 8(4), 431–438 (1992)

    Article  Google Scholar 

  38. K. Hara, R. Yokogawa, K. Sadao, Dynamic control of biped locomotion robot for disturbance on lateral plane (in Japanese), in Proceedings of the Japan Society of Mechanical Engineers 72nd Kansai Meeting, 1997, pp. 10-37–38

    Google Scholar 

  39. K. Nagasaka, The whole body motion generation of humanoid robot using dynamics filter (in Japanese). Ph.D thesis, University of Tokyo, 2000

    Google Scholar 

  40. T. Sugihara, A study of the realtime generation of legged motions on a whole-body humanoid robot, Mc. thesis, University of Tokyo, 2001 (a brief English version is published as: T. Sugihara, Y. Nakamura, H. Inoue, Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002, pp. 1404–1409)

    Google Scholar 

  41. Y. Tamiya, A study of whole-body behavior of a humanoid robot with an autonomous balancer, Mc. thesis, University of Tokyo, 1998 (a brief English version is published as: S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, H. Inoue, AutoBalancer: an online dynamic balance compensation scheme for humanoid robots, in Proceedings of the 4th International Workshop on Algorithmic Foundation on Robotics, 2000)

    Google Scholar 

  42. R. Boulic, R. Mas, D. Thalmann, Inverse kinetics for center of mass position control and posture optimization, in Proceedings of European Workshop on Combined Real and Synthetic Image Processing for Broadcast and Video Production, 1994

    Google Scholar 

  43. D.E. Orin, A. Goswami, S.-H. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35, 161–176 (2013)

    Article  Google Scholar 

  44. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 1644–1650

    Google Scholar 

  45. A. Escande, N. Mansard, P.-B. Wieber, Fast resolution of hierarchized inverse kinematics with inequality constraints, in Proceedings of 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 3733–3738

    Google Scholar 

  46. T. Sugihara, Solvability-unconcerned inverse kinematics by the Levenberg-Marquardt method. IEEE Trans. Robot. 27(5), 984–991 (2011)

    Article  Google Scholar 

  47. A. Herzog, S. Schaal, L. Righetti, Structured contact force optimization for kino-dynamic motion generation, arXiv preprint, arXiv:1605.08571, 2016

    Google Scholar 

  48. A. Del Prete, N. Mansard, Robustness to joint-torque tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 32(5), 1091–1105 (2016)

    Article  Google Scholar 

  49. A. Murai, K. Takeichi, T. Miyatake, Y. Nakamura, Musculoskeletal modeling and physiological validation, in Proceedings of 2014 IEEE Workshop on Advanced Robotics and its Social Impacts, 2014, pp. 108–113

    Google Scholar 

  50. K. Ayusawa, G. Venture, Y. Nakamura, Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int. J. Robot. Res. 33(3), 446–468 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomichi Sugihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Sugihara, T. (2017). Historical Perspective and Scope. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_1-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics