Skip to main content

Androgen Receptor and Steroidogenesis Pathway Control

  • Chapter
  • First Online:
Prostate Cancer: Shifting from Morphology to Biology

Abstract

Prostate cancer is the most common male malignancy and the leading cause of mortality in western countries. Androgens, the hormones that regulate prostate development and physiology, play a pivotal role also in the maintenance and progression of prostate cancer (Chen et al, Curr Opin Pharmacol, 8:440–448, 2008). Approximately 80–90 % of these tumors are dependent on androgen at initial diagnosis. Therapies that counteract androgen, by reducing its levels, blocking it, or antagonizing the androgen receptor (AR) and its target genes, represent the mainstay of treatment for prostate cancer (Chen et al, Curr Opin Pharmacol, 8:440–448, 2008). However, androgen ablation therapy ultimately fails because prostate cancer progresses to a hormone refractory state.

This chapter focuses on the role of AR-coactivators in prostate cancerogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60:6134–6141

    PubMed  CAS  Google Scholar 

  • Attard G, Cooper CS, de Bono JS (2009) Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16:458–462

    Article  PubMed  CAS  Google Scholar 

  • Baughman G, Wiederrecht GJ, Faith Campbell N, Martin MM, Bourgeois S (1995) FKBP51, a novel T-cell specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 15:4395–4440

    PubMed  CAS  Google Scholar 

  • Baughman G, Wiederrecht GJ, Chang F, Martin MM, Bourgeois S (1997) Tissue distribution and abundance of human FKBP51, an FK506-binding protein that can mediate calcineurin inhibition. Biochem Biophys Res Commun 232:437–443

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Sawyers CL, Scher HI (2008) Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol 8:440–448

    Article  PubMed  CAS  Google Scholar 

  • Cheung J, Smith DF (2000) Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol 14:939–946

    Article  PubMed  CAS  Google Scholar 

  • Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM (2007) Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120:719–733

    Article  PubMed  CAS  Google Scholar 

  • Cioffi DL, Hubler TR, Scammell JG (2011) Organization and function of the FKBP52 and FKBP51 genes. Curr Opin Pharmacol 11:308–313

    Article  PubMed  CAS  Google Scholar 

  • Dornan J, Taylor P, Walkinshaw MD (2003) Structures of immunophilins and their ligand complexes. Curr Top Med Chem 3:1392–1409. Review

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Fliss AE, Robins DM, Caplan AJ (1996) Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem 271:28697–28702

    Article  PubMed  CAS  Google Scholar 

  • Febbo PG, Lowenberg M, Thorner AR, Brown M, Loda M, Golub TR (2005) Androgen mediated regulation and functional implications of FKBP51 expression in prostate cancer. J Urol 173:1772–1777

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Aumüller T (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 148:105–150

    Article  PubMed  CAS  Google Scholar 

  • Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A (1995) Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 55:3068–3072

    PubMed  CAS  Google Scholar 

  • Hubler TR, Denny WB, Valentine DL, Cheung-Flynn J, Smith DF, Scammell JG (2003) The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology 144:2380–2387

    Article  PubMed  CAS  Google Scholar 

  • Komura E, Chagraoui H, Mansat de Mas V, Blanchet B, de Sepulveda P, Larbret F, Larghero J, Tulliez M, Debili N, Vainchenker W, Giraudier S (2003) Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. Exp Hematol 31:622–630

    Article  PubMed  CAS  Google Scholar 

  • Komura E, Tonetti C, Penard-Lacronique V, Chagraoui H, Lacout C, Lecouédic JP, Rameau P, Debili N, Vainchenker W, Giraudier S (2005) Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. Cancer Res 65:3281–3289

    PubMed  CAS  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue- derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25:750–760

    Article  PubMed  Google Scholar 

  • Madan RA, Pal SK, Sartor O, Dahut WL (2011) Overcoming chemotherapy resistance in prostate cancer. Clin Cancer Res 17:3892–3902

    Article  PubMed  CAS  Google Scholar 

  • Makkonen H, Kauhanen M, Paakinaho V, Jääskeläinen T, Palvimo JJ (2009) Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers. Nucleic Acids Res 37:4135–4148

    Article  PubMed  CAS  Google Scholar 

  • McEwan IJ (2004) Molecular mechanisms of androgen receptor-mediated gene regulation: structure–function analysis of the AF-1 domain. Endocr Relat Cancer 11:281–293

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol 315:787–798

    Article  PubMed  CAS  Google Scholar 

  • Menicanin D, Bartold PM, Zannettino AC, Gronthos S (2009) Genomic profiling of mesenchymal stem cells. Stem Cell Rev 5:36–50

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Periyasamy S, Warrier M, Tillekeratne MP, Shou W, Sanchez ER (2007) The immunophilin ligands cyclosporin a and fk506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms. Endocrinology 148:4716–4726

    Article  PubMed  CAS  Google Scholar 

  • Periyasamy S, Hinds T Jr, Shemshedini L, Shou W, Sanchez ER (2010) FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene 29:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Pratta WB, Galignianaa MD, Harrella JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872

    Article  Google Scholar 

  • Romano S, D’Angelillo A, Staibano S, Ilardi G, Romano MF (2010a) FK506-binding protein 51 is a possible novel tumoral marker. Cell Death Dis 1:55

    Article  Google Scholar 

  • Romano S, Di Pace A, Sorrentino A, Bisogni R, Sivero L, Romano MF (2010b) FK506 binding proteins as targets in anticancer therapy. Anticancer Agents Med Chem 10:651–656 (review)

    Article  PubMed  CAS  Google Scholar 

  • Romano S, Sorrentino A, Di Pace A, Nappo G, Mercogliano C, Romano MF (2011) The emerging role of large immunophlin FK506 binding protein 51 in cancer. Curr Med Chem 18:5424–5429 (review)

    Article  PubMed  CAS  Google Scholar 

  • Scammell JG, Denny WB, Valentine DL, Smith DF (2001) Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 124:152–165

    Article  PubMed  CAS  Google Scholar 

  • Somarelli JA, Lee SY, Skolnick J, Herrera RJ (2008) Structure-based classification of 45 FK506-binding proteins. Proteins 72:197–208

    Article  PubMed  CAS  Google Scholar 

  • Staibano S, Mascolo M, Ilardi G, Siano M, De Rosa G (2011) Immunohistochemical analysis of FKBP51 in human cancers. Curr Opin Pharmacol 11:338–347

    Article  PubMed  CAS  Google Scholar 

  • Stechschulte LA, Sanchez ER (2011) FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 11:332–337

    Article  PubMed  CAS  Google Scholar 

  • Velasco AM, Gillis KA, Li Y, Brown EL, Sadler TM, Achilleos M, Greenberger LM, Frost P, Bai W, Zhang Y (2004) Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145:3913–3924

    Article  PubMed  CAS  Google Scholar 

  • Vittorioso P, Cowling R, Faure JD, Caboche M, Bellini C (1998) Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development. Mol Cell Biol 18:3034–3043

    PubMed  CAS  Google Scholar 

  • Yeh WC, Li TK, Bierer BE, McKnight SL (1995) Identification and characterization of an immunophilin expressed during the clonal expansion phase of adipocyte differentiation. Proc Natl Acad Sci U S A 92:11081–11085

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Xiong H, Kan LX, Zhang CK, Jiao XF, Fu G, Zhang QH, Lu L, Tong JH, Gu BW, Yu M, Liu JX, Licht J, Waxman S, Zelent A, Chen E, Chen SJ (1999) Genomic sequence, structural organization, molecular evolution and abberrant rearrangement of promyelocytic leukemia zinc finger gene. Proc Natl Acad Sci U S A 96:11422–11427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romano, S., Bisogni, R., Romano, M.F. (2013). Androgen Receptor and Steroidogenesis Pathway Control. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_4

Download citation

Publish with us

Policies and ethics