Skip to main content

Atomic Force Microscopy and Spectroscopy of Silk from Spider Draglines, Capture-Web Spirals, and Silkworms

  • Chapter
  • First Online:
Biotechnology of Silk

Part of the book series: Biologically-Inspired Systems ((BISY,volume 5))

Abstract

Atomic force microscopy (AFM) of silk proteins usually shows segmented nanofibers, or fields of globules, or both. The sizes of the globules are similar to the sizes of the segments in the nanofibers. These structures are seen in silk proteins from both spider dragline silk and silkworm silk from Bombyx mori. Nanoindentation by AFM has been used to measure elastic properties of silk and reconstituted silk structures. Force spectroscopy has been done on two spider silks, giving saw-tooth force-vs-distance curves (force spectra) with both silks. A molecular construct of spider dragline silk gave single-molecule force spectra consistent with the unzipping of successive repeated domains containing β-sheet and helical amino-acid repeats. Native capture-silk force spectra showed an exponential increase in rupture forces as the pulling distance increased. This exponential force increase was modeled as a network of springs. Basic information about atomic force microscopy and spectroscopy are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker N, Oroudjev E, Mutz S, Cleveland JP, Hansma PK, Hayashi CY, Makarov DE, Hansma HG (2003) Molecular nanosprings in spider capture silk threads. Nat Mater 2:278–283

    Article  PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Breslauer DN, Muller SJ, Lee LP (2010) Generation of monodisperse silk microspheres prepared with microfluidics. Biomacromolecules 11:643–647

    Article  PubMed  CAS  Google Scholar 

  • Brown CP, Macleod J, Amenitsch H, Cacho-Nerin F, Gill HS, Price AJ, Traversa E, Licoccia S, Rosei F (2011) The critical role of water in spider silk and its consequence for protein mechanics. Nanoscale 3:3805–3811

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Hansma HG (2000) Basement membrane macromolecules: insights from atomic force microscopy. J Struct Biol 131:44–55

    Article  PubMed  CAS  Google Scholar 

  • Drexler KE, Peterson C, Pergamit G (1991) Unbounding the future. William Morrow, New York

    Google Scholar 

  • Du N, Liu XY, Narayanan J, Li L, Lim MLM, Li D (2006) Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 91:4528–4535

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18:1883–1889

    Article  CAS  Google Scholar 

  • Golan R, Pietrasanta LI, Hsieh W, Hansma HG (1999) DNA toroids: stages in condensation. Biochemistry 38:14069–14076

    Article  PubMed  CAS  Google Scholar 

  • Gould SAC, Tran KT, Spagna JC, Moore AMF, Shulman JB (1999) Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. Int J Biol Macromol 24:151–157

    Article  PubMed  CAS  Google Scholar 

  • Greving I, Cai M, Vollrath F, Schniepp HC (2012) Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules 13:676–682

    Article  PubMed  CAS  Google Scholar 

  • Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52:71–92

    Article  PubMed  CAS  Google Scholar 

  • Hansma HG, Gould SAC, Hansma PK, Gaub HE, Longo ML, Zasadzinski JAN (1991) Imaging nanometer scale defects in Langmuir-Blodgett films with the atomic force microscope. Langmuir 7:1051–1054

    Article  CAS  Google Scholar 

  • Heinz WF, Hoh JH (1999) Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol 17:143–150

    Article  PubMed  CAS  Google Scholar 

  • Hermanson KD, Huemmerich D, Scheibel T, Bausch AR (2007) Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 19:1810–1815

    Article  CAS  Google Scholar 

  • Huang T, Ren P, Huo B (2007) Atomic force microscopy observations of the topography of regenerated silk fibroin aggregations. J Appl Polym Sci 106:4054–4059

    Article  CAS  Google Scholar 

  • Inoue S-I, Magoshi J, Tanaka T, Magoshi Y, Becker M (2000) Atomic force microscopy: Bombyx mori silk fibroin molecules and their higher order structure. J Polym Sci, Part B: Polym Phys 38:1436–1439

    Article  CAS  Google Scholar 

  • Kane DM, Naidoo N, Staib GR (2010) Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand. J Appl Phys 108(073509):5

    Google Scholar 

  • Laney DE, Garcia RA, Parsons SM, Hansma HG (1997) Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. Biophys J 72:806–813

    Article  PubMed  CAS  Google Scholar 

  • Li SF, Mcghie AJ, Tang SL (1994a) New internal structure of spider dragline silk revealed by atomic force microscopy. Biophys J 66:1209–1212

    Article  PubMed  CAS  Google Scholar 

  • Li SFY, Mcghie AJ, Tang SL (1994b) Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J Vac Sci Technol A Vac Surf Film 12:1891–1894

    Article  CAS  Google Scholar 

  • Makarov DE, Wang Z, Thompson JB, Hansma HG (2002) On the interpretation of force extension curves of single protein molecules. J Chem Phys 116:7760–7765

    Article  CAS  Google Scholar 

  • Miller LD, Putthanarat S, Eby RK, Adams WW (1999) Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy. Int J Biol Macromol 24:159–165

    Article  PubMed  CAS  Google Scholar 

  • Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31:2926–2933

    Article  PubMed  CAS  Google Scholar 

  • Oroudjev E, Soares J, Arcidiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA 99:6460–6465

    Article  PubMed  CAS  Google Scholar 

  • Oroudjev E, Hayashi CY, Soares J, Arcidiacono S, Fossey SA, Hansma HG (2003) Nanofiber formation in spider dragline-silk as probed by atomic force microscopy and molecular pulling. In: Materials Research Society symposium proceedings. Cambridge University Press, New York

    Google Scholar 

  • Pan Z-J, Zhu M-N (2005) Microstructures of Bombyx mori silk and spider silk revealed by atomic force microscopy. J Mater Sci Eng 23:365

    Google Scholar 

  • Parez-Rigueiro J, Elices M, Plaza GR, Guinea GV (2007) Similarities and differences in the supramolecular organization of silkworm and spider silk. Macromolecules 40:5360–5365

    Article  Google Scholar 

  • Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O, Lechner J, Carbon J, Hansma HG (1999) Probing the Sacchromyces cervisiae CBF3-CEN DNA kinetochore complex using atomic force microscopy. Proc Natl Acad Sci USA 96:3757–3762

    Article  PubMed  CAS  Google Scholar 

  • Plaza GR, Corsini P, Marsano E, Peìrez-Rigueiro J, Biancotto L, Elices M, Riekel C, Agulloì-Rueda F, Gallardo E, Calleja JM, Guinea GV (2009) Old silks endowed with new properties. Macromolecules 42:8977–8982

    Article  CAS  Google Scholar 

  • Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch AR (2006) Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A 82:261–264

    Article  CAS  Google Scholar 

  • Rugar D, Hansma PK (1990) Atomic force microscopy. Phys Today 43:23–30

    Article  CAS  Google Scholar 

  • Schafer A, Vehoff T, Glisovic A, Salditt T (2008) Spider silk softening by water uptake: an AFM study. Eur Biophys J 37:197–204

    Article  PubMed  Google Scholar 

  • Schneider SW, Larmer J, Henderson RM, Oberleithner H (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch 435:362–367

    Article  PubMed  CAS  Google Scholar 

  • Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338:897–902

    Article  PubMed  CAS  Google Scholar 

  • Thompson JB, Hansma HG, Hansma PK, Plaxco KW (2002) The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy. J Mol Biol 322:645–652

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Xu Q, Zou S, Li H, Xu W, Zhang X, Shao Z, Kudera M, Gaub HE (2000) Single-molecule force spectroscopy on Bombyx mori silk fibroin by atomic force microscopy. Langmuir 16:4305–4308

    Article  CAS  Google Scholar 

  • Zhao Z, Chen L-Y, Zhao X-J (2008) Morphologies and structures of silk fiber and silk fibroin under atomic force microscopy. Sichuan J Zool 6:005

    Google Scholar 

  • Zhong J, Ma M, Zhou J, Wei D, Yan Z, He D (2012) Tip-induced micropatterning of silk fibroin protein using in situ solution atomic force microscopy. ACS Appl Mater Interfaces 5:737–746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Greenwood Hansma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hansma, H.G. (2014). Atomic Force Microscopy and Spectroscopy of Silk from Spider Draglines, Capture-Web Spirals, and Silkworms. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_7

Download citation

Publish with us

Policies and ethics