Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 104))

Abstract

Averaging procedures used to form the Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) equations are outlined. Also, turbulence modelling hierarchies for unsteady flows are presented. These range from URANS to DNS (Direct Numerical Simulation). The grid requirements for different approaches are also discussed. The LES models that are used for results in later chapters are given, along with details of others. Different types of LES filters are outlined. Their potential strong impact on results is discussed. A hierarchy of key elements for industrial LES is proposed. Notably, for flows without transition, the actual explicit LES model comes low down. More the key element is the numerical schemes discussed in Chap. 3. Key hybrid RANS-LES approaches are given. The advantages and disadvantages of these are outlined. The discussion shows that considerable expertise is needed to safely use hybrid RANS-LES techniques. Hence, the need for best practice guidelines is proposed. Methods for generating turbulence inflow are outlined. It is shown that many of these have limited applicability to complex engineering systems and so suitable strategies proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For hypersonic and highly compressible flows, where the turbulent fluctuations lead to substantial density fluctuations, it can be necessary to use Favre averaged RANS equations. This involves making density weighted averages. Hence, with this process, for example, \(\bar{\phi} = \frac{\int_{\tiny{-t_{l}/2}} ^{\tiny{t_{l}/2}} \rho (t ) \phi (t )dt }{\int_{\tiny{-t_{l}/2}} ^{\tiny{t_{l}/2}} \rho (t )dt } = \frac{\overline{\rho\phi }}{\bar{\rho}} \).

References

  • Y. Addad, R. Prosser, D. Laurence, S. Moreau, F. Mendonca, On the use of embedded meshes in the les of external flows. Flow Turbul. Combust. 80(3), 393–403 (2008)

    MATH  Google Scholar 

  • N. Andersson, L.E. Eriksson, L. Davidson, LES prediction of flow and acoustic field of a coaxial jet, in Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, 23–25 May 2005. AIAA Paper Number 2005-2884

    Google Scholar 

  • J. Bardina, J.H. Ferziger, W.C. Reynolds, Improved subgrid-scale models for large-eddy simulation, in Proceedings of the 13th AIAA Fluid and Plasma Dynamics Conference, vol. 1, Snowmass, Colo., 14–16 July 1980. AIAA Paper Number 80-1357

    Google Scholar 

  • P. Batten, U. Goldberg, S. Chakravarthy, LNS—An approach towards embedded LES. AIAA J. 427, 2002 (2002)

    Google Scholar 

  • P. Batten, U. Goldberg, S. Chakravarthy, Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004)

    Google Scholar 

  • P. Batten, P.R. Spalart, M. Terracol, Use of hybrid RANS-LES for acoustic source prediction, in Large-Eddy Simulation for Acoustics, ed. by T. Huttl, C. Wagner, P. Sagaut (2007)

    Google Scholar 

  • P. Batten, U. Goldberg, E. Kang, S. Chakravarthy, Smart sub-grid-scale model for LES and hybrid RANS/LES, in Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, 27–30 June 2011, pp. 326–371. AIAA Paper Number 2011-3472

    Google Scholar 

  • A. Belme, S. Wornom, A. Dervieux, B. Koobus, M.V. Salvetti, Application of hybrid and VMS-LES turbulent models to aerodynamic simulations, in Proceedings of the 27th International Congress of the Aeronautical Sciences, ICAS (2010), pp. 1–8

    Google Scholar 

  • J. Berland, P. Lafon, F. Daude, F. Crouzet, C. Bogey, C. Bailly, Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering. Comput. Fluids 47(1), 65–74 (2011)

    MathSciNet  Google Scholar 

  • N.J. Bisek, D.P. Rizzetta, J. Poggie, Plasma control of a turbulent shock boundary-layer, interaction. AIAA J. (2013). doi:10.2514/1.J052248

    Google Scholar 

  • C. Bogey, C. Bailly, Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling. AIAA J. 43(2), 437–439 (2005)

    Google Scholar 

  • J.P. Boris, F.F. Grinstein, E.S. Oran, R.L. Kolbe, New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)

    Google Scholar 

  • G. Bosch, W. Rodi, Simulation of vortex shedding past a square cylinder with different turbulence models. Int. J. Numer. Methods Fluids 28(4), 601–616 (1998)

    MATH  Google Scholar 

  • T.T. Brandt, Usability of explicit filtering in large eddy simulation with a low-order numerical scheme and different subgrid-scale models. Int. J. Numer. Methods Fluids 57(7), 905–928 (2008)

    MATH  Google Scholar 

  • M. Breuer, W. Rodi, Large-eddy simulation of turbulent flow through a straight square duct and a 180 bend, in Direct and Large-Eddy Simulation I (1994), pp. 273–285

    Google Scholar 

  • J. Bridges, M.P. Wernet, Measurements of the aeroacoustic sound source in hot jets, in Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference, South Carolina, 12–14 May 2003. AIAA Paper Number 2003-3130

    Google Scholar 

  • B. Chaouat, R. Schiestel, A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17, 065106 (2005)

    MathSciNet  Google Scholar 

  • D.R. Chapman, Computational aerodynamics, development and outlook. AIAA J. 17, 1293–1313 (1979)

    MATH  Google Scholar 

  • N. Chauvet, S. Deck, L. Jacquin, Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)

    Google Scholar 

  • H. Choi, P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(1), 011702 (2012)

    Google Scholar 

  • F.K. Chow, P. Moin, A further study of numerical errors in large-eddy simulations. J. Comput. Phys. 184(2), 366–380 (2003)

    MATH  Google Scholar 

  • R.A. Clark, J.H. Ferziger, W.C. Reynolds, Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979)

    MATH  Google Scholar 

  • J.D. Coull, Wake induced transition in low pressure turbines. PhD thesis, Department of Engineering, The University of Cambridge (2009)

    Google Scholar 

  • Y.M. Dakhoul, K.W. Bedford, Improved averaging method for turbulent flow simulation. Part I: theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6(2), 49–64 (1986a)

    MathSciNet  MATH  Google Scholar 

  • Y.M. Dakhoul, K.W. Bedford, Improved averaging method for turbulent flow simulation. Part I: theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6(2), 65–82 (1986b)

    MathSciNet  MATH  Google Scholar 

  • L. Davidson, Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2905–2915 (2009)

    MATH  Google Scholar 

  • L. Davidson, M. Billson, Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27(6), 1028–1042 (2006)

    Google Scholar 

  • L. Davidson, S.H. Peng, Hybrid LES-RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows. Int. J. Numer. Methods Fluids 43(9), 1003–1018 (2003)

    MATH  Google Scholar 

  • J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970)

    MATH  Google Scholar 

  • J.R. DeBonis, Progress towards large-eddy simulations for prediction of realistic nozzle systems, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006. AIAA Paper Number 2006-487

    Google Scholar 

  • S. Deck, Recent improvements in the zonal detached eddy simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)

    Google Scholar 

  • S. Deck, P.É. Weiss, M. Pamiès, E. Garnier, Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48(1), 1–15 (2011)

    Google Scholar 

  • J.A. Domaradzki, D.D. Holm, Navier-Stokes-alpha model: LES equations with nonlinear dispersion, in Modern Simulation Strategies for Turbulent Flow, ed. by B.J. Geurts. ERCOFTAC Bulletin, vol. 107 (Edwards, Ann Arbor, 2001)

    Google Scholar 

  • P. Druault, S. Lardeau, J.P. Bonnet, F. Coiffet, J. Delville, E. Lamballais, J.F. Largeau, L. Perret, M.N. Glauser, B. George et al., Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 42(3), 447–456 (2004)

    Google Scholar 

  • S. Eastwood, Hybrid LES-RANS of complex geometry jets. PhD thesis, University of Cambridge (2010)

    Google Scholar 

  • S.J. Eastwood, P.G. Tucker, H. Xia, C. Klostermeier, Developing large eddy simulation for turbomachinery applications. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2999–3013 (2009)

    Google Scholar 

  • M. Farge, K. Schneider, Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets. Flow Turbul. Combust. 66(4), 393–426 (2001)

    MathSciNet  MATH  Google Scholar 

  • S. Gamard, W.K. George, Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Combust. 63, 443–477 (1999)

    Google Scholar 

  • W.K. George, M. Tutkun, Mind the gap: a guideline for large eddy simulation. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2839–2847 (2009)

    MathSciNet  MATH  Google Scholar 

  • N.J. Georgiadis, D.P. Rizzetta, C. Fureby, Large-eddy simulation: current capabilities, recommended practices, and future research. AIAA J. 48(8), 1772–1784 (2010)

    Google Scholar 

  • B.J. Geurts, D.D. Holm, Regularization modeling for large-eddy simulation. Phys. Fluids 15(1), L13–L16 (2003)

    MathSciNet  Google Scholar 

  • B.J. Geurts, D.D. Holm, Leray and LANS-α modelling of turbulent mixing. J. Turbul. 7(10), 1–33 (2006)

    MathSciNet  Google Scholar 

  • S. Ghosal, An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125(1), 187–206 (1996)

    MathSciNet  MATH  Google Scholar 

  • S. Ghosal, T.S. Lund, P. Moin, K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286(1), 229–255 (1995)

    MathSciNet  MATH  Google Scholar 

  • D.A. Gieseking, J.I. Choi, J.R. Edwards, H.A. Hassan, Compressible-flow simulations using a new large-eddy simulation/Reynolds-averaged Navier-Stokes model. AIAA J. 49(10), 2194–2209 (2011)

    Google Scholar 

  • S.S. Girimaji, Partially-averaged Navier-Stokes model for turbulence: a Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech. 73(3), 413–421 (2006)

    MATH  Google Scholar 

  • V. Gravemeier, The variational multiscale method for laminar and turbulent flow. Arch. Comput. Methods Eng. 13(2), 249–324 (2006)

    MathSciNet  MATH  Google Scholar 

  • F. Hamba, An attempt to combine large eddy simulation with the kε model in a channel-flow calculation. Theor. Comput. Fluid Dyn. 14(5), 323–336 (2001)

    MATH  Google Scholar 

  • F. Hamba, A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface. Theor. Comput. Fluid Dyn. 20(2), 89–101 (2006)

    MathSciNet  MATH  Google Scholar 

  • F. Holzäpfel, Adjustment of subgrid-scale parameterizations to strong streamline curvature. AIAA J. 42(7), 1369–1377 (2004)

    Google Scholar 

  • T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1), 3–24 (1998)

    MATH  Google Scholar 

  • T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(1), 47–59 (2000)

    MATH  Google Scholar 

  • N. Jarrin, R. Prosser, J.C. Uribe, S. Benhamadouche, D. Laurence, Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int. J. Heat Fluid Flow 30(3), 435–442 (2009)

    Google Scholar 

  • R.J. Jefferson-Loveday, P.G. Tucker, LES of impingement heat transfer on a concave surface. Numer. Heat Transf., Part A, Appl. 58(4), 247–271 (2010)

    Google Scholar 

  • R.J. Jefferson-Loveday, P.G. Tucker, Wall-resolved LES and zonal LES of round jet impingement heat transfer on a flat plate. Numer. Heat Transf., Part B, Fundam. 59(3), 190–208 (2011)

    Google Scholar 

  • J. Jewkes, An improved turbulent boundary layer inflow condition, applied to the simulation of jets in cross-flow. PhD thesis, School of Engineering, University of Warwick (2008)

    Google Scholar 

  • S.H. Johansson, L. Davidson, E. Olsson, Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a kε turbulence model. Int. J. Numer. Methods Fluids 16(10), 859–878 (1993)

    MATH  Google Scholar 

  • J. Joo, P. Durbin, Simulation of turbine blade trailing edge cooling. J. Fluids Eng. 131, 021102 (2009)

    Google Scholar 

  • S.A. Jordan, A large-eddy simulation methodology in generalized curvilinear coordinates. J. Comput. Phys. 148(2), 322–340 (1999)

    MATH  Google Scholar 

  • A. Keating, U. Piomelli, E. Balaras, H.J. Kaltenbach, A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16, 4696–4712 (2004)

    Google Scholar 

  • W.W. Kim, S. Menon, An unsteady incompressible Navier–Stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. Methods Fluids 31(6), 983–1017 (1999)

    MATH  Google Scholar 

  • M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    MATH  Google Scholar 

  • B. Kosovic, Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech. 336(1), 151–182 (1997)

    MATH  Google Scholar 

  • R.H. Kraichnan, Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)

    MATH  Google Scholar 

  • E. Labourasse, P. Sagaut, Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. J. Comput. Phys. 182(1), 301–336 (2002)

    MATH  Google Scholar 

  • R. Laraufie, S. Deck, P. Sagaut, A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230(23), 8647–8663 (2011)

    MathSciNet  MATH  Google Scholar 

  • S. Lardeau, M.A. Leschziner, Unsteady rans modelling of wake–blade interaction: computational requirements and limitations. Comput. Fluids 34(1), 3–21 (2005)

    MATH  Google Scholar 

  • B.E. Launder, B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–137 (1974)

    Google Scholar 

  • A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248 (1975)

    Google Scholar 

  • M. Leschziner, N. Li, F. Tessicini, M. Leschziner, N. Li, F. Tessicini, Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1777), 2885–2903 (2009)

    MATH  Google Scholar 

  • J. Li, Hybrid RANS/LES modelling of OGV/prediffuser flow. PhD thesis, Department of Aeronautical and Automotive Engineering, Loughborough University (2012)

    Google Scholar 

  • Y. Liu, P.G. Tucker, R.M. Kerr, Linear and nonlinear model large-eddy simulations of a plane jet. Comput. Fluids 37(4), 439–449 (2008)

    MATH  Google Scholar 

  • S. Loiodice, P.G. Tucker, J. Watson, Coupled open rotor engine intake simulations, in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, FL, 4–7 January 2010. AIAA Paper Number 2010–840

    Google Scholar 

  • T.S. Lund, X. Wu, K.D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)

    MathSciNet  MATH  Google Scholar 

  • M. Mani, Hybrid turbulence models for unsteady simulation. J. Aircr. 41(1), 110–118 (2004)

    Google Scholar 

  • L.G. Margolin, W.J. Rider, F.F. Grinstein, Modeling turbulent flow with implicit LES. J. Turbul. 7(15), 1–27 (2006)

    MathSciNet  Google Scholar 

  • A.L. Marsden, O.V. Vasilyev, P. Moin, Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175(2), 584–603 (2002)

    MATH  Google Scholar 

  • I. Mary, P. Sagaut, Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002)

    Google Scholar 

  • F. Mathey, D. Cokljat, J.P. Bertoglio, E. Sergent, Specification of LES inlet boundary condition using vortex method, in Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October 2003

    Google Scholar 

  • F.R. Menter, Zonal two equation kω turbulence models for aerodynamic flows, in Proceedings of the AIAA Fluid Dynamics Conference, 24th, Orlando, FL, USA, 6–9 July 1993. AIAA Paper Number 93-2906

    Google Scholar 

  • F.R. Menter, M. Kuntz, R. Bender, A scale-adaptive simulation model for turbulent flow predictions, in Proceedings of the 41th AIAA Aerospace Sciences Meeting and Exhibit, vol. 767, Reno, NV, USA, 6–9 January 2003

    Google Scholar 

  • C.J. Moore, The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80(02), 321–367 (1977)

    Google Scholar 

  • P.J. Morris, L.N. Long, A. Bangalore, Q. Wang, A parallel three-dimensional computational aeroacoustics method using nonlinear disturbance equations. J. Comput. Phys. 133(1), 56–74 (1997)

    MATH  Google Scholar 

  • P.J. Morris, Y. Du, K. Kara, Jet noise simulations for realistic jet nozzle geometries, in Proceedings of the IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction, Procedia Engineering, vol. 6, 29–31 March (Elsevier, Amsterdam, 2010), pp. 28–37

    Google Scholar 

  • N.J. Mullenix, D.V. Gaitonde, M.R. Visbal, A plasma-actuator-based method to generate a supersonic turbulent boundary layer inflow condition for numerical simulation, in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011. AIAA Paper Number 2011-3556

    Google Scholar 

  • L. Mydlarski, Z. Warhaft, On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Google Scholar 

  • V. Nee, L. Kovasznay, Simple phenomenological theory of turbulent shear flows. Phys. Fluids 12, 473 (1969)

    MATH  Google Scholar 

  • F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    MATH  Google Scholar 

  • N.V. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P.R. Spalart, An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629 (2000)

    Google Scholar 

  • K. Nozawa, T. Tamura, Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 90(10), 1151–1162 (2002)

    Google Scholar 

  • T.S.D. O’Mahoney, Large-eddy simulation of turbine rim seals. PhD thesis, School of Engineering, Surrey University (2011)

    Google Scholar 

  • M. Opiela, R. Keinke, W. Schroder, LES of wake–blade interaction, in Proceedings of the 4th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Firenze, Italy, 20–23 March 2001

    Google Scholar 

  • S.A. Orszag, V. Borue, W.S. Flannery, A.G. Tomboulides, Recent successes, current problems, and future prospects of CFD, in Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. AIAA Paper Number 97-0431

    Google Scholar 

  • L. Perret, J. Delville, R. Manceau, J.P. Bonnet, Turbulent inflow conditions for large-eddy simulation based on low-order empirical model. Phys. Fluids 20, 075107 (2008)

    Google Scholar 

  • C.D. Pierce, P. Moin, Method for generating equilibrium swirling inflow conditions. AIAA J. 36(7), 1325–1327 (1998)

    Google Scholar 

  • U. Piomelli, E. Balaras, Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34(1), 349–374 (2002)

    MathSciNet  Google Scholar 

  • U. Piomelli, J. Ferziger, P. Moin, J. Kim, New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids 1, 1061–1068 (1989)

    Google Scholar 

  • U. Piomelli, E. Balaras, H. Pasinato, K.D. Squires, P.R. Spalart, The inner–outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24(4), 538–550 (2003)

    Google Scholar 

  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(1), 35 (2004)

    Google Scholar 

  • C.D. Pruett, Eulerian time-domain filtering for spatial large-eddy simulation. AIAA J. 38(9), 1634–1642 (2000)

    Google Scholar 

  • D. Razafindralandy, A. Hamdouni, C. Béghein, A class of subgrid-scale models preserving the symmetry group of Navier–Stokes equations. Commun. Nonlinear Sci. Numer. Simul. 12(3), 243–253 (2007)

    MathSciNet  MATH  Google Scholar 

  • A.J. Revell, T.J. Craft, D.R. Laurence, Turbulence modelling of unsteady turbulent flows using the stress strain lag model. Flow Turbul. Combust. 86(1), 129–151 (2011)

    MATH  Google Scholar 

  • P. Sagaut, LES and DNS simulation of turbomachinery flows, in Recent Developments in Numerical Methods for Turbomachinery Flows, ed. by T. Arts. VKI Lecture Series (2002)

    Google Scholar 

  • P. Sagaut, E. Garnier, E. Tromeur, L. Larcheveque, E. Labourasse, Turbulent inflow conditions for large-eddy simulation of compressible wall-bounded flows. AIAA J. 42(3), 469–477 (2004)

    Google Scholar 

  • P. Sagaut, T. Hüttl, C. Wagner, Large-Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • J.U. Schluter, X. Wu, S. Kim, S. Shankaran, J.J. Alonso, H. Pitsch, A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications. Trans. Am. Soc. Mech. Eng. J. Fluids Eng. 127(4), 806 (2005)

    Google Scholar 

  • U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975)

    MathSciNet  MATH  Google Scholar 

  • A. Scotti, C. Meneveau, D.K. Lilly, Generalized smagorinsky model for anisotropic grids. Phys. Fluids A, Fluid Dyn. 5, 2306 (1993)

    MATH  Google Scholar 

  • J.A. Sethian, Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    MathSciNet  MATH  Google Scholar 

  • M. Shur, P. Spalart, M. Strelets, A. Travin, Navier-Stokes simulation of shedding turbulent flow past a circular cylinder and a cylinder with backward splitter plate, in ECCOMAS Computational Fluid Dynamics Conference, Paris, 9–13 September 1996, pp. 676–682

    Google Scholar 

  • M.L. Shur, P.R. Spalart, M.K. Strelets, A.V. Garbaruk, Further steps in LES-based noise prediction for complex jets, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006. AIAA Paper Number 2006-485

    Google Scholar 

  • J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Google Scholar 

  • A. Smirnov, S. Shi, I. Celik, Random flow generation technique for large eddy simulations and particle-dynamics modeling. Trans. ASME I J. Fluids Eng. 123(2), 359–371 (2001)

    Google Scholar 

  • P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. Rech. Aérosp. 1, 5–21 (1994)

    Google Scholar 

  • P.R. Spalart, Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21(3), 252–263 (2000)

    Google Scholar 

  • P.R. Spalart, C.L. Rumsey, Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553 (2007)

    Google Scholar 

  • P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181–195 (2006)

    MATH  Google Scholar 

  • C.G. Speziale, Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36(2), 173–184 (1998)

    MATH  Google Scholar 

  • A. Spille-Kohoff, H.J. Kaltenbach, Generation of turbulent inflow data with a prescribed shear-stress profile, in 3rd AFOSR International Conference on DNS/LES Arlington, TX, ed. by L. Sakell, T. Beutner, C. Liu. DNS/LES Progress and Challenges, Greyden, Columbus, OH, 5–9 August 2001, pp. 326–371

    Google Scholar 

  • S. Stolz, N.A. Adams, Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15(8), 2398–2412 (2003)

    Google Scholar 

  • M. Strelets, Detached eddy simulation of massively separated flows, in Proceedings of the 39th AIAA Aerospace Sinces Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. AIAA Paper Number 2001-0879

    Google Scholar 

  • G.R. Tabor, M.H. Baba-Ahmadi, Inlet conditions for large eddy simulation: a review. Comput. Fluids 39(4), 553–567 (2010)

    MathSciNet  MATH  Google Scholar 

  • T. Talha, A numerical investigation of three-dimensional unsteady turbulent channel flow subjected to temporal acceleration. PhD thesis, University of Warwick (2012)

    Google Scholar 

  • K. Tatsumi, H. Iwai, E.C. Neo, K. Inaoka, K. Suzuki, Prediction of time-mean characteristics and periodical fluctuation of velocity and thermal fields of a backward-facing step, in Proceedings of the 1st Internal Symposium on Turbulence and Shear Flow, ed. by S. Banerjee, J.K. Eaton, Santa Barbara, USA, 12–15 September 1999, pp. 139–144

    Google Scholar 

  • L. Temmerman, M. Leschziner, A priori studies of near wall RANS model within a hybrid LES/RANS scheme, in Engineering Turbulence Modelling and Experiments, 5, ed. by W. Rodi, N. Fueyo (2002), pp. 326–371

    Google Scholar 

  • M. Terracol, P. Sagaut, C. Basdevant, A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J. Comput. Phys. 167(2), 439–474 (2001)

    MathSciNet  MATH  Google Scholar 

  • P.G. Tucker, Computation of Unsteady Internal Flows: Fundamental Methods with Case Studies (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  • P.G. Tucker, Differential equation-based wall distance computation for DES and RANS. J. Comput. Phys. 190(1), 229–248 (2003)

    MATH  Google Scholar 

  • P.G. Tucker, Novel MILES computations for jet flows and noise. Int. J. Heat Fluid Flow 25(4), 625–635 (2004)

    Google Scholar 

  • P.G. Tucker, Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Prog. Aerosp. Sci. 47, 546–569 (2011)

    Google Scholar 

  • P.G. Tucker, L. Davidson, Zonal kl based large eddy simulations. Comput. Fluids 33(2), 267–287 (2004)

    MATH  Google Scholar 

  • P.G. Tucker, Y. Liu, Turbulence modelling for flows around convex features giving rapid eddy distortion. Int. J. Heat Fluid Flow 28(5), 1073–1091 (2007)

    Google Scholar 

  • P.G. Tucker, Y. Liu, R.M. Kerr, Plane jet simulations using LES with linear and nonlinear models, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2006. AIAA Paper Number 2006-0702

    Google Scholar 

  • P.G. Tucker, S. Eastwood, C. Klostermeier, R. Jefferson-Loveday, J. Tyacke, Y. Liu, Hybrid LES approach for practical turbomachinery flows—part I: hierarchy and example simulations. J. Turbomach. Trans. ASME 134(2), 021023 (2011)

    Google Scholar 

  • J.C. Tyacke, Low Reynolds number heat transfer prediction employing large eddy simulation for electronics geometries. PhD thesis, Swansea University (2009)

    Google Scholar 

  • J. Tyacke, P.G. Tucker, R.J. Jefferson-Loveday, R. Vadlamani, R. Watson, I. Naqavi, X. Yang, Les for turbines: methodologies, cost and future outlooks, in Proceedings of ASME Turbo Expo 2013 GT2013, San Antonio, TX, USA, 3–7 June 2013. ASME Paper Number GT2013-94416

    Google Scholar 

  • R. Vadlamani, High fidelity large eddy simulation of turbines: current status and future outlook. PhD thesis, School of Engineering, The University of Cambridge (2013)

    Google Scholar 

  • H. van der Ven, A family of large eddy simulation (LES) filters with nonuniform filter widths. Phys. Fluids 7, 1171 (1995)

    MATH  Google Scholar 

  • M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011)

    MathSciNet  Google Scholar 

  • K. Viswanathan, Jet aeroacoustic testing: issues and implications. AIAA J. 41(9), 1674–1689 (2003)

    Google Scholar 

  • B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer. PhD thesis, Twente University (1995)

    Google Scholar 

  • A.W. Vreman, The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids 15(8), L61–L64 (2003)

    MathSciNet  Google Scholar 

  • A.W. Vreman, B.J. Geurts, A new treatment of commutation-errors in large-eddy simulation, in Advances in Turbulence IX, ed. by I.P. Castro, P.E. Hancock. Proceedings of the 9th European Turbulence Conference Southampton, UK, 2–5 July 2002

    Google Scholar 

  • M. Wolfshtein, The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Transf. 12(3), 301–318 (1969)

    Google Scholar 

  • X. Wu, Establishing the generality of three phenomena using a boundary layer with free-stream passing wakes. J. Fluid Mech. 664, 193–219 (2010)

    MATH  Google Scholar 

  • X. Wu, J.P. Hickey, Visualization of continuous stream of grid turbulence past the Langston turbine cascade. AIAA J. 50(1), 215–225 (2012)

    Google Scholar 

  • A. Yoshizawa, Subgrid-scale modeling with a variable length scale. Phys. Fluids A, Fluid Dyn. 1(7), 1293–1295 (1989)

    Google Scholar 

  • A. Yoshizawa, Bridging between eddy-viscosity-type and second-order models using a two-scale dia, in 9th International Symposium on Turbulent Shear Flows, vol. 18, Kyoto, Japan, 16–18 August 1993

    Google Scholar 

  • A. Yoshizawa, K. Horiuti, A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)

    Google Scholar 

  • S. Zahrai, F.H. Bark, R.I. Karlsson, On anisotropic subgrid modeling. Eur. J. Mech. B, Fluids 14(4), 459–486 (1995)

    MATH  Google Scholar 

  • B. Zhong, P.G. Tucker, kl based hybrid LES/RANS approach and its application to heat transfer simulation. Int. J. Numer. Methods Fluids 46, 983–1005 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tucker, P.G. (2014). Turbulence and Its Modelling. In: Unsteady Computational Fluid Dynamics in Aeronautics. Fluid Mechanics and Its Applications, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7049-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7049-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7048-5

  • Online ISBN: 978-94-007-7049-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics