Skip to main content

Physics and Design of Hard Disk Drive Magnetic Recording Read Heads

  • Reference work entry
Handbook of Spintronics

Abstract

Magnetic recording heads always have been on the forefront of technology. A finished magnetic recording head that is manufactured in high volume is the outcome of a coordinated effort of various scientific and engineering disciplines. This chapter will focus on the physics and design of modern magnetic recording read heads. It will explain the underlying concepts of thin film magnetism and electron transport in nanostructures and describe the aspects of device scaling, magnetic stabilization, signal-to-noise considerations, and read-back performance of currently employed tunnel magnetoresistive read heads. An outlook on possible future read-head technologies such as current-perpendicular-to-the-plane giant magnetoresistance, scissor, two-dimensional magnetic recording, and spin-torque sensors will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α:

Magnetic damping constant

β:

Bulk spin-scattering parameter

γ:

Interface spin-scattering parameter

Θ:

Angle of layer magnetization with respect to the magnetic field

a:

Media transition length

ABS:

Air-bearing surface

ACL:

Antiferromagnetic coupling layer

AF:

Antiferromagnet

AMR:

Anisotropic magnetoresistance

bcc:

Body-centered cubic

BP:

Bias point

CFAS:

Co2Fe0.5Al0.5Si

CIP:

Current in plane

CL:

Cap layer

CMP:

Chemical mechanical polishing

CPP:

Current perpendicular to the plane

FL:

Free layer

g:

Gyromagnetic ratio

GBit/in2 :

Gigabit/square inch

GMR:

Giant magnetoresistance

H:

Magnetic field

H :

Magnetic out-of-plane stiffness field

hcp:

Hexagonal close packed

HD :

Demagnetization field

HHB :

Hard-bias field

HII :

Magnetic in-plane stiffness field

HMS:

Head-media spacing

IBD:

Ion beam deposition

IBM:

International Business Machines

kB :

Boltzmann constant

lSF :

Spin-diffusion length

MF :

Free layer magnetization

MR:

Magnetoresistance

Mr :

Remanent magnetization

MRW:

Magnetic read width

Ms :

Saturation magnetization

OTC:

Offtrack capability

OTP:

Offtrack position

P:

Spin polarization

PL:

Pinned layer

PVD:

Physical vapor deposition

PW:

Pulse width

R:

Resistance

R0 :

Sensor resistance at zero field

RA:

Resistance-area product

RAC :

Alternating current resistance

RAP :

Sensor resistance in the antiparallel state

RDC :

Direct current resistance

RG:

Read gap

RHmax :

Sensor resistance for negative media field

RHmin :

Sensor resistance for positive media field

RKKY:

Ruderman-Kittel-Kasuya-Yosida

RL:

Reference layer

RP :

Sensor resistance in the parallel state

S:

Noise spectral density

S1:

Bottom shield

S2:

Top shield

SH:

Stripe height

SL:

Seed layer

SNR:

Signal-to-noise ratio

SQTP:

Squeeze track pitch

SSS:

Shield-to-shield spacing

T:

Absolute temperature in Kelvin

t:

Thickness

TB:

Tunnel barrier

TDMR:

Two-dimensional magnetic recording

TFC:

Thermal flight-height control

TMR:

Tunnel magnetoresistance

TW:

Track width

u:

Utilization

Vb :

Bias voltage

VF :

Free layer volume

References

  1. Grochowski E (2012) 2012 HDD capital equipment and technology report, Coughlin Associates

    Google Scholar 

  2. Binasch G, Grünberg P, Saurenbach F, Zinn F (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830

    Article  ADS  Google Scholar 

  3. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friedrich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys Rev Lett 61:2472–2475

    Article  ADS  Google Scholar 

  4. Parkin SSP, Bhadra B, Roche KP (1991) Oscillatory magnetic exchange coupling through thin copper layers. Phys Rev Lett 66:2152–2155

    Article  ADS  Google Scholar 

  5. Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DA, Mauri D (1991) Giant magnetoresistance in soft ferromagnetic multilayers. J Appl Phys 43:1297–1300

    Google Scholar 

  6. Heim DE, Fontana RE, Tsang C, Speriosu VS, Gurney BA, Williams ML (1994) Design and operation of spin valve sensors. IEEE Trans Magn 30:316–321

    Article  ADS  Google Scholar 

  7. Tsang C, Fontana RE, Lin T, Heim DE, Speriosu VS, Gurney BA, Williams ML (1994) Design fabrication & testing of spin-valve read heads for high density recording. IEEE Trans Magn 30:3801–3806

    Article  ADS  Google Scholar 

  8. Hong J, Noma K, Kanda E, Kanai H (2003) Very large giant magnetoresistance of spin valves with specularly reflective oxide layers. Appl Phys Lett 83:960–962

    Article  ADS  Google Scholar 

  9. Kools JCS (1996) Exchange-biased spin-valves for magnetic storage. IEEE Trans Magn 32:3165–3184

    Article  ADS  Google Scholar 

  10. Childress JA, Fontana RE (2005) Magnetic recording read head sensor technology. CR Physique 6:997–1012

    Article  ADS  Google Scholar 

  11. Mee CD, Daniel ED (1995) Magnetic recording technology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  12. Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett 54A:225–226

    Article  ADS  Google Scholar 

  13. Mac Laren JM, Zhang XG, Butler WH (1997) Validity of the Julliere model of spin-dependent tunneling. Phys Rev B 56:11827–11832

    Article  ADS  Google Scholar 

  14. Parker JS, Watts SM, Ivanov PG, Xiong P (2002) Spin polarization of CrO2 at and across an artificial barrier. Phys Rev Lett 88:196601

    Article  ADS  Google Scholar 

  15. Bullen H, Garrett SJ (2002) Epitaxial growth of CrO2 thin films on TiO2(110) surfaces. Chem Mater 14:243–248

    Article  Google Scholar 

  16. Umetsu RY, Kobayashi K, Fujita A, Kainuma R, Ishida K (2008) Phase stability and magnetic properties of L21 phase in Co2Mn(Al1-xSix) heusler alloys. Scr Mater 58:723–726

    Article  Google Scholar 

  17. Ishikawa T, Liu H, Taira T, Matsuda K, Uemura T, Yamamoto M (2009) Influence of film composition in Co2MnSi electrodes on tunnel magnetoresistance characteristics of Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions. Appl Phys Lett 95:232512

    Article  ADS  Google Scholar 

  18. Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231–L234

    Article  ADS  Google Scholar 

  19. Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273–3276

    Article  ADS  Google Scholar 

  20. Sakuraba Y, Nakata J, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2005) Huge spin-polarization of L21-ordered Co2MnSi epitaxial heusler alloy film. Jpn J Appl Phys 44:L1100–L1102

    Article  ADS  Google Scholar 

  21. Okamura S, Miyazaki A, Sugimoto S, Tezuka N, Inomata K (2005) Large tunnel magnetoresistance at room temperature with a Co2FeAl full-heusler alloy electrode. Appl Phys Lett 86:232503

    Article  ADS  Google Scholar 

  22. Oogane M, Shinano M, Sakuraba Y, Ando Y (2009) Tunnel magnetoresistance effect in magnetic tunnel junctions using epitaxial Co2FeSi Heusler alloy electrode. J Appl Phys 105:07C903

    Article  Google Scholar 

  23. Butler WH, Zhang XG, Schulthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys Rev B 63:054416

    Article  ADS  Google Scholar 

  24. Mathon J, Umerski A (2001) Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction. Phys Rev B 63:220403(R)

    Article  ADS  Google Scholar 

  25. Zhang XG, Butler WH (2004) Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys Rev B 70:172407

    Article  ADS  Google Scholar 

  26. Parkin SSP, Kaiser C, Pachula A, Rice PM, Samant M, Yang SH (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature 3:862–867

    Article  Google Scholar 

  27. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature 3:868–871

    Article  Google Scholar 

  28. Djayaprawira DD, Tsunegawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasa S, Suzuki Y, Ando K (2005) 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 86:092502

    Article  ADS  Google Scholar 

  29. Nagamine Y, Maehara H, Tsunegawa K, Djayaprawira DD, Watanabe N (2006) Ultralow resistance-area product of 0.4Ω(μm)2 and high magnetoresistance above 50 % in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 89:162507

    Article  ADS  Google Scholar 

  30. Lee YM, Hayakawa J, Ikeda S, Matsukura F, Ohno H (2007) Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl Phys Lett 90:212507

    Article  ADS  Google Scholar 

  31. Bonell F, Hauet T, Andrieu S, Bertran F, Le Fèvre P, Calmels L, Tejeda A, Montaigne F, Warot-Fonrose B, Belhadji B, Nicolaou A, Taleb-Ibrahimi A (2012) Spin-Polarized Electron Tunneling in bcc FeCo/MgO/FeCo (001) Magnetic Tunnel Junctions. Phys Rev Lett 108:176602-1–176602-5

    Google Scholar 

  32. Nogues J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232

    Article  ADS  Google Scholar 

  33. Fuke H, Saito K, Kamiguchi Y, Iwasaki H, Sahashi M (1997) Spin-valve giant magnetoresistive films with antiferromagnetic Ir-Mn layers. J Appl Phys 81:4004–4006

    Article  ADS  Google Scholar 

  34. van Driel J, Coehoorn R, Lenssen KMH, Kuiper AET, de Boer FR (1999) Thermal stability of Ir–Mn as exchange biasing material. J Appl Phys 85:5522–5524

    Article  ADS  Google Scholar 

  35. van Driel J, de Boer FR, Lenssen KMH, Coehoorn R (2000) Exchange biasing by Ir19Mn81: dependence on temperature, microstructure and antiferromagnetic layer thickness. J Appl Phys 88:975–982

    Article  ADS  Google Scholar 

  36. Tsunoda M, Takahashi H, Takahashi M (2009) Systematic study for magnetization dependence of exchange anisotropy strength in Mn-Ir/FM (FM=Ni-Co, Co-Fe, Fe-Ni) bilayer system. IEEE Trans Magn 45:3877–3880

    Article  ADS  Google Scholar 

  37. van den Berg HAM, Clemens W, Gieres G, Rupp G, Schelter W, Vieth M (1996) GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE Trans Magn 32:4624–4626

    Article  ADS  Google Scholar 

  38. Huai Y, Zhang J, Anderson GW, Rana P, Funada S, Hung CY, Zhao M, Tran S (1999) Spin-valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/IrMn. J Appl Phys 85:5528–5530

    Article  ADS  Google Scholar 

  39. Ruderman MA, Kittel C (1954) Indirect exchange coupling of nuclear moments by conduction electrons. Phys Rev 96:99–102

    Article  ADS  Google Scholar 

  40. Kasuya T (1956) A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model. Prog Theory Phys 16:45–57

    Google Scholar 

  41. Yosida K (1957) Magnetic properties of Mn-Cu alloys. Phys Rev 106:893–898

    Article  ADS  Google Scholar 

  42. Bruno P, Chapert C (1991) Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys Rev Lett 67:1602–1605 and Erratum (1991) Phys Rev Lett 67:2592

    Article  ADS  Google Scholar 

  43. Bruno P, Chapert C (1992) Ruderman-kittel theory of oscillatory interlayer exchange coupling. Phys Rev B 46:261–270

    Article  ADS  Google Scholar 

  44. Mathon J, Villeret M, Edwards DM (1992) Exchange coupling in magnetic multilayers: effect of partial confinement of carriers. J Phys Condens Mattter 4:9873–9892

    Article  ADS  Google Scholar 

  45. Parkin SSP, More N, Roche KP (1990) Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett 64:2304–2307

    Article  ADS  Google Scholar 

  46. Parkin SSP (1991) Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and Sd transition metals. Phys Rev Lett 67:3598–3601

    Article  ADS  Google Scholar 

  47. Slonczewski JC (1991) Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers. Phys Rev Lett 67:3172–3175

    Article  ADS  Google Scholar 

  48. Filipkowski ME, Krebs JJ, Prinz GA, Gutierrez CJ (1995) Giant near-90° coupling in epitaxial CoFe/Mn/CoFe sandwich structures. Phys Rev Lett 75:1847–1850

    Article  ADS  Google Scholar 

  49. Bobo JF, Kikuchi H, Redon O, Snoeck E, Piecuch M, While RL (1999) Pinholes in antiferromagnetically coupled multilayers: effect on hysteresis loops and relation to biquadratic exchange. Phys Rev B 90:4131–4141

    Article  ADS  Google Scholar 

  50. Demokritov SO (1998) Biquadratic interlayer coupling in layered magnetic systems. J Phys D Appl Phys 31:925–941

    Article  ADS  Google Scholar 

  51. Beach RS, Pinarbasi M, Carey MJ (2000) AP-pinned spin valve GMR and magnetization. J Appl Phys 87:5723–5725

    Article  ADS  Google Scholar 

  52. Dimitrov DV, van Ek J, Li YF, Xiao JQ (2000) Enhanced magnetic stability in spin valves with synthetic antiferromagnet. J Appl Phys 87:6427–6429

    Article  ADS  Google Scholar 

  53. Bilzer C, Devolder T, Kim JV, Counil G, Chappert C, Cardoso S, Freitas PP (2006) Study of the dynamic magnetic properties of soft CoFeB films. J Appl Phys 100:053903

    Article  ADS  Google Scholar 

  54. Tsunegawa K, Djayaprawira DD, Nagai M, Maehara H, Yamagata S, Watanabe N (2005) Giant tunneling magnetoresistance effect in low-resistance CoFeB/MgO(001)/CoFeB magnetic tunnel junctions for read-head applications. Appl Phys Lett 87:072503

    Article  ADS  Google Scholar 

  55. Hayakawa J, Ikeda S, Lee YM, Matsukura F, Ohno H (2006) Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 89:232510

    Article  ADS  Google Scholar 

  56. Cha JJ, Read JC, Buhrman RA, Muller DA (2007) Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 91:062516

    Article  ADS  Google Scholar 

  57. Cha JJ, Read JC, Egelhoff WF, Huang PY, Tseng HW, Li Y, Buhrman RA, Muller DA (2009) Atomic-scale spectroscopic imaging of CoFeB/Mg–B–O/CoFeB magnetic tunnel junctions. Appl Phys Lett 95:032506

    Article  ADS  Google Scholar 

  58. Tezuka N, Ikeda N, Sugimoto S, Inomata K (2007) Giant tunnel magnetoresistance at room temperature for junctions using full-heusler Co2FeAl0:5Si0:5 electrodes. Jpn J Appl Phys 46:L454–L456

    Article  ADS  Google Scholar 

  59. Singleton EW, Narayan PB, Xiong W, Raman R, Hoo HL (1999) Effects of Cr, CrV, and CrTi underlayers on magnetic, structural, and materials reliability properties of CoPt thin films. J Appl Phys 85:5840–5842

    Article  ADS  Google Scholar 

  60. Worledge DC, Trouilloud PL (2003) Magnetoresistance measurement of unpatterned magnetic tunnel junction wafers by current-in-plane tunneling. Appl Phys Lett 83:84–86

    Article  ADS  Google Scholar 

  61. Bertram HN (1994) Theory of magnetic recording. Cambridge University Press, Cambridge, UK, p 133

    Book  Google Scholar 

  62. Mächtle P, Berger R, Dietzel A, Despont M, Häberle W, Stutz R, Binnig G K, Vettiger P (2001) Integrated microheaters for in-situ flying-Height control of sliders used in hard-disk drives. In: The 14th IEEE international conference on micro electro mechanical systems (MEMS), pp 196–199

    Google Scholar 

  63. Leal JL, Kryder MH (1996) Interlayer coupling in spin valve structures. IEEE Trans Magn 32:4642–4644

    Article  ADS  Google Scholar 

  64. Kools JCS, Kula W, Mauri D, Lin T (1999) Effect of finite magnetic film thickness on néel coupling in spin valves. J Appl Phys 85:4466–4468

    Article  ADS  Google Scholar 

  65. Jin Z, Bertram N (2008) A simple model for optimal read width due to finite write width and offtrack interference. IEEE Trans Magn 44:3384

    Article  ADS  Google Scholar 

  66. Wang L, Patwari MS, Stokes SW (2011) Modeling of 1/f noise due to thermally induced magnetic switches of antiferromagnetic grains in magnetic tunneling readers. J Appl Phys 109:07B725

    Google Scholar 

  67. Lei ZQ, Li GJ, Egelhoff WF Jr, Lai PT, Pong PWT (2011) Review of noise sources in magnetic tunnel junction sensors. IEEE Trans Magn 47:602–612

    Article  ADS  Google Scholar 

  68. Klaassen KB, van Peppen JCL, Xing X (2003) Noise in magnetic tunnel junction devices. J Appl Phys 93:8573–8575

    Article  ADS  Google Scholar 

  69. Klaassen KB, Xing X, van Peppen JCL (2004) Signal and noise aspects of magnetic tunnel junction sensors for data storage. IEEE Trans Magn 40:195–202

    Article  ADS  Google Scholar 

  70. Keshner MS (1982) 1/f Noise. Proc IEEE 70:212–218

    Article  ADS  Google Scholar 

  71. Christensson S, Lundström I, Svensson C (1968) Low frequency noise in MOS transistors – I theory. Solid State Electron 11:797–812

    Article  ADS  Google Scholar 

  72. Stearrett R, Wang WG, Shah LR, Xiao JQ, Nowak ER (2010) Magnetic noise evolution in CoFeB/MgO/CoFeB tunnel junctions during annealing. Appl Phys Lett 97:243502

    Article  ADS  Google Scholar 

  73. Md Nor AF, Kato T, Ahn SJ, Daibou T, Ono K, Oogane M, Ando Y, Miyazaki T (2006) Low-frequency noise in MgO magnetic tunnel junctions. J Appl Phys 99(08):T306

    Article  Google Scholar 

  74. Machlup S (1954) Noise in semiconductors: spectrum of a two-parameter random signal. J Appl Phys 25:341

    Article  ADS  MATH  Google Scholar 

  75. Klaassen KB, Taratorin A (2007) Is electrical 1/f noise in tunneling magnetoresistive heads a form of equilibrium noise? IEEE Trans Magn 43:2193–2195

    Article  ADS  Google Scholar 

  76. Liu F, Ding Y, Kemshetti R, Davies K, Rana P, Mao S (2009) Electrical low frequency random telegraph noise in magnetic tunnel junctions. J Appl Phys 105:07C927

    Google Scholar 

  77. Smith N, Arnett P (2001) White-noise magnetization fluctuations in magnetoresistive heads. Appl Phys Lett 78:1448–1450

    Article  ADS  Google Scholar 

  78. Smith N, Arnett P (2002) Thermal magnetization noise in spin valves. IEEE Trans Magn 38:32–37

    Article  ADS  Google Scholar 

  79. Jury JC, Klaassen KB, van Peppen JCL, Wang SX (2002) Measurement and analysis of noise sources in giant magnetoresistive sensors up to 6 GHz. IEEE Trans Magn 38:3545–3555

    Article  ADS  Google Scholar 

  80. Taratorin A (2009) Measurement of effective free layer magnetization orientation of TMR sensors. IEEE Trans Magn 45:3449–3452

    Article  ADS  Google Scholar 

  81. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353–9358

    Article  ADS  Google Scholar 

  82. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7

    Article  ADS  Google Scholar 

  83. Tsoi M, Jansen AG, Bass J, Chiang WC, Seck M, Tsoi V, Wyder P (1998) Excitation of a magnetic multilayer by an electric current. Phys Rev Lett 80:4281–4284, erratum Phys Rev Lett 81:493

    Article  ADS  Google Scholar 

  84. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84:3149–3152

    Article  ADS  Google Scholar 

  85. Smith N, Carey MJ, Childress JR (2010) Measurement of Gilbert damping parameters in nanoscale CPP-GMR spin valves. Phys Rev B 81:184431

    Article  ADS  Google Scholar 

  86. Zhu JG, Kim N, Zhou Y, Zheng Y, Chang J, Ju K, Zhu X, White RM (2004) Current induced noise in CPP spin valves. IEEE Trans Magn 40:2323–2325

    Article  ADS  Google Scholar 

  87. Katine JA, Fullerton EE (2008) Device implications of spin-transfer torques. J Magn Magn Mater 320:1217–1226

    Article  ADS  Google Scholar 

  88. Smith N, Katine JA, Childress JR, Carey MJ (2005) Angular dependence of spin torque critical currents for CPP-GMR read heads. IEEE Trans Magn 41:2935–2940

    Article  ADS  Google Scholar 

  89. Smith N, Katine JA, Childress JR, Carey MJ (2006) Thermal and spin-torque noise in CPP (TMR and/or GMR) read sensors. IEEE Trans Magn 42:114–119

    Article  ADS  Google Scholar 

  90. Xiao J, Zangwill A, Stiles MD (2004) Boltzmann test of Slonczewski’s theory of spin-transfer torque. Phys Rev B 70:172405

    Article  ADS  Google Scholar 

  91. Takagishi M, Yamada K, Iwasaki H, Fuke HN, Hashimoto S (2010) Magnetoresistance ratio and resistance area design of CPP-MR film for 2–5 Tb/in2 read sensors. IEEE Trans Magn 46:2086–2089

    Article  ADS  Google Scholar 

  92. Bonyhard PI, Lee JK (1990) Magnetoresistive read magnetic recording head offtrack performance assessment. IEEE Trans Magn 26:2448–2450

    Article  ADS  Google Scholar 

  93. Lee JK, Bonyhard PI (1990) A track density model for magnetoresistive heads considering erase bands. IEEE Trans Magn 26:2475–2477

    Article  ADS  Google Scholar 

  94. Jin Z, Salo M, Wood R (2008) Areal-density capability of a magnetic recording system using a “747” test based only on data-block failure-rate. IEEE Trans Magn 44:3718–3721

    Article  ADS  Google Scholar 

  95. Uesugi T, Machita T, Miura S, Degawa N, Yamane T, Ohta M, Makino K, Kawasaki S, Hatate H, Nishizawa T, Kanaya T, Kagami T, Oike T (2013) Study of side shielded reader for future ultra-high TPI magnetic recording, TMRC 2013

    Google Scholar 

  96. Wood R, Williams M, Kavic A, Miles J (2009) The feasibility of magnetic recording at 10 terabits per square inch on conventional media. IEEE Trans Magn 45:917

    Article  ADS  Google Scholar 

  97. Elidrissi MR, Chan KS, Yuan Z (2014) A study of DMR/TDMR with a double/triple reader head. IEEE Trans Magn 3:3100507

    Google Scholar 

  98. Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48:7099–7113

    Article  ADS  Google Scholar 

  99. Pratt WP, Lee SF, Holody P, Yang Q, Loloee R, Bass J, Schroeder PA (1993) Giant magnetoresistance with current perpendicular to the multilayer planes. J Magn Magn Mater 126:406–409

    Article  ADS  Google Scholar 

  100. Lee SF, Pratt WP, Yang Q, Holody P, Loloee R, Schroeder PA, Bass J (1993) Two-channel analysis of CPP-GMR data for AG/Co and AgSn/Co multilayers. J Magn Mag Mater 118:L1–L5

    Article  ADS  Google Scholar 

  101. Piraux L, Dubois S, Fert A (1996) Perpendicular giant magnetoresistance in magnetic multilayered nanowires. J Magn Magn Mater 159:L287–L292

    Article  ADS  Google Scholar 

  102. Jogo A, Nagasaka K, Ibusuki T, Shimizu Y, Tanaka A, Oshima H (2007) Current-perpendicular spin valves with high-resistivity ferromagnetic metals for ultrahigh-density magnetic recording. J Magn Magn Mater 309:80–86

    Article  ADS  Google Scholar 

  103. Jiang Y, Abe S, Nozaki T, Tezuka N, Inomata K (2003) Perpendicular giant magnetoresistance and magnetic switching properties of a single spin valve with a synthetic antiferromagnet as a free layer. Phys Rev B 68:224426

    Article  ADS  Google Scholar 

  104. Yuasa H, Fukuzawa H, Iwasaki H, Sahashi M (2005) The number of Cu lamination effect on current-to-plane giant-magnetoresistance of spin-valves with Co50Fe50 alloy. J Appl Phys 97:113907

    Article  ADS  Google Scholar 

  105. Nikolaev K, Anderson P, Kolbo P, Dimitrov D, Xue S, Peng X, Pokhil T, Cho H, Chen Y (2008) Heusler alloy based current-perpendicular-to-the-plane giant magnetoresistance heads for high density magnetic recording. J Appl Phys 103(07):F533

    Article  Google Scholar 

  106. Childress JR, Carey MJ, Maat S, Smith N, Fontana RE, Druist D, Carey K, Katine JA, Robertson N, Boone TD, Alex M, Moore J, Tsang CH (2008) All-metal current-perpendicular-to-plane giant magnetoresistance sensors for narrow-track magnetic recording. IEEE Trans Magn 44:90–93

    Article  ADS  Google Scholar 

  107. Carey MJ, Maat S, Chandrashekariaih S, Katine JA, Chen W, York B, Childress JR (2011) Co2 MnGe-based current-perpendicular-to-the-plane giant magnetoresistance spin-valve sensors for recording head applications. J Appl Phys 109:093912

    Article  ADS  Google Scholar 

  108. Maat S, Carey MJ, Childress JR (2008) Current perpendicular to the plane spin-valves with CoFeGe magnetic layers. Appl Phys Lett 93:143505

    Article  ADS  Google Scholar 

  109. Nakatani TM, Furubayashi T, Hono K (2011) Interfacial resistance and spin-dependent scattering in the current-perpendicular-to-plane giant magnetoresistance using Co2Fe(Al0.5Si0.5) Heusler alloy and Ag. J Appl Phys 109:07B724

    Article  Google Scholar 

  110. Sato J, Oogane M, Naganuma H, Ando Y (2011) Large magnetoresistance effect in epitaxial Co2Fe0.4Mn0.6Si/Ag/Co2Fe0.4Mn0.6Si devices. Appl Phys Express 4:113005

    Article  ADS  Google Scholar 

  111. Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H, Ando Y (2009) Half-metallicity and Gilbert damping constant in Co2FexMn1−xSi Heusler alloys depending on the film composition. Appl Phys Lett 94:122504

    Article  ADS  Google Scholar 

  112. Lee H, Wang YHA, Mewes CKA, Butler WH, Mewes T, Maat S, York B, Carey MJ, Childress JR (2009) Magnetization relaxation and structure of CoFeGe alloys. Appl Phys Lett 95:082502

    Article  ADS  Google Scholar 

  113. Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M, Miyazaki M (2009) Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J Appl Phys 105:07D306

    Article  Google Scholar 

  114. Oogane M, Kubota T, Kota K, Mizukami S, Naganuma H, Sakuma A, Ando Y (2010) Gilbert magnetic damping constant of epitaxially grown Co-based Heusler alloy thin films. Appl Phys Lett 96:252501

    Article  ADS  Google Scholar 

  115. Childress JR, Carey MJ, Cyrille MC, Carey K, Smith N, Katine JA, Boone TD, Driskill-Smith AAG, Maat S, Mackay K, Tsang CH (2006) Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans Magn 42:2444–2446

    Article  ADS  Google Scholar 

  116. Childress JR, Carey MJ, Kiselev SI, Katine JA, Maat S, Smith N (2006) Dual current-perpendicular-to-the-plane giant magnetoresistive sensors for magnetic recording heads with reduced sensitivity to spin-torque noise. J Appl Phys 99:08S305

    Article  Google Scholar 

  117. Carey MJ, Smith N, Maat S, Childress JR (2008) High-output current-perpendicular to the plane giant magnetoresistance sensor with synthetic-ferrimagnet free layer and enhanced spin-torque critical currents. Appl Phys Lett 93:102509

    Article  ADS  Google Scholar 

  118. Reidy SG, Cheng L, Bailey WE (2003) Dopants for independent control of precessional frequency and damping in Ni81Fe19 (50 nm) thin films. Appl Phys Lett 82:1254–1256

    Article  ADS  Google Scholar 

  119. Maat S, Smith N, Carey MJ, Childress JR (2008) Suppression of spin torque noise in current perpendicular to the plane spin-valves by addition of Dy cap layers. Appl Phys Lett 93:103506

    Article  ADS  Google Scholar 

  120. Fukuzawa H, Yuasa H, Hashimoto S, Koi K, Iwasaki H, Takagishi M, Tanaka Y, Sahashi M (2004) MR ratio enhancement by NOL current-confined-path structures in CPP spin valves. IEEE Trans Magn 40:2236–2238

    Article  ADS  Google Scholar 

  121. Fukuzawa H, Yuasa H, Hashimoto S, Iwasaki H, Tanaka Y (2005) Large magnetoresistance ratio of 10 % by Fe50Co50 layers for current-confined-path current-perpendicular-to-plane giant magnetoresistance spin-valve films. Appl Phys Lett 87:082507

    Article  ADS  Google Scholar 

  122. Nakamoto K, Hoshiya H, Katada H, Hoshino K, Yoshida N, Shiimoto M, Takei H, Sato Y, Hatatani M, Watanabe K, Carey M, Maat S, Childress J (2008) CPP–GMR heads with a current screen layer for 300 Gb/in2 recording. IEEE Trans Magn 44:95–99

    Article  ADS  Google Scholar 

  123. Shimazawa K, Tsuchiya Y, Mizuno T, Hara S, Chou T, Miyauchi D, Machita T, Ayukawa T, Ichiki T, Noguchi K (2010) CPP-GMR film with ZnO-based novel spacer for future high-density magnetic recording. IEEE Trans Magn 56:1487–1490

    Article  ADS  Google Scholar 

  124. Braganca PM, Gurney BA, Wilson BA, Katine JA, Maat S, Childress JR (2010) Nanoscale magnetic field detection using a spin torque oscillator. Nanotechnology 21:235202

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Maat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Maat, S., Marley, A.C. (2016). Physics and Design of Hard Disk Drive Magnetic Recording Read Heads. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_35

Download citation

Publish with us

Policies and ethics