Skip to main content

Role of NADPH Oxidase in Beta Cell Dysfunction

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

Dysfunction of pancreatic beta cells and loss of beta cell mass is a major factor in the development of diabetes. Currently there is no cure for diabetes, and available therapies do not focus on halting or reversing the loss of beta cell function. New strategies to preserve beta cells in diabetes are needed. Conferring protection to the beta cells against the effects of sustained intracellular reactive oxygen species (ROS) presents a novel approach to preserve beta cell mass. Important contributors to increases in intercellular ROS in beta cells are nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzymes. Discussed in this review are the roles of NADPH oxidases in the beta cell, their contribution to beta cell dysfunction, and new emerging selective inhibitors of NADPH oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abo A, Pick E et al (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353(6345):668–670

    CAS  PubMed  Google Scholar 

  • Adachi Y, Shibai Y et al (2008) Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene 27(36):4921–4932

    CAS  PubMed  Google Scholar 

  • Ago T, Kitazono T et al (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109(2):227–233

    CAS  PubMed  Google Scholar 

  • Aguirre J, Rios-Momberg M et al (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118

    CAS  PubMed  Google Scholar 

  • Allaoui A, Botteaux A et al (2009) Dual oxidases and hydrogen peroxide in a complex dialogue between host mucosae and bacteria. Trends Mol Med 15(12):571–579

    CAS  PubMed  Google Scholar 

  • Alves ES, Haidar AA et al (2012) Angiotensin II-induced JNK activation is mediated by NAD(P)H oxidase in isolated rat pancreatic islets. Regul Pept 175(1–3):1–6

    CAS  PubMed  Google Scholar 

  • Ando S, Kaibuchi K et al (1992) Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 267(36):25709–25713

    CAS  PubMed  Google Scholar 

  • Babior BM, Kipnes RS et al (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babior BM, Lambeth JD et al (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    CAS  PubMed  Google Scholar 

  • Banfi B, Molnar G et al (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276(40):37594–37601

    CAS  PubMed  Google Scholar 

  • Banfi B, Clark RA et al (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513

    CAS  PubMed  Google Scholar 

  • Banfi B, Malgrange B et al (2004a) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279(44):46065–46072

    CAS  PubMed  Google Scholar 

  • Banfi B, Tirone F et al (2004b) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279(18):18583–18591

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    CAS  PubMed  Google Scholar 

  • Bedard K, Lardy B et al (2007) NOX family NADPH oxidases: not just in mammals. Biochimie 89(9):1107–1112

    CAS  PubMed  Google Scholar 

  • Bedard K, Jaquet V et al (2012) NOX5: from basic biology to signaling and disease. Free Radic Biol Med 52(4):725–734

    CAS  PubMed  Google Scholar 

  • BelAiba RS, Djordjevic T et al (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42(4):446–459

    CAS  PubMed  Google Scholar 

  • Biberstine-Kinkade KJ, DeLeo FR et al (2001) Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). J Biol Chem 276(33):31105–31112

    CAS  PubMed  Google Scholar 

  • Bleich D, Chen S et al (1999) Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice. J Clin Invest 103(10):1431–1436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brar SS, Corbin Z et al (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol 285(2):C353–C369

    CAS  PubMed  Google Scholar 

  • Brun S, Malagnac F et al (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74(2):480–496

    CAS  PubMed  Google Scholar 

  • Cai W, He JC et al (2008) Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol 173(2):327–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caillou B, Dupuy C et al (2001) Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 86(7):3351–3358

    CAS  PubMed  Google Scholar 

  • Cano-Dominguez N, Alvarez-Delfin K et al (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7(8):1352–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cassatella MA, Bazzoni F et al (1990) Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem 265(33):20241–20246

    CAS  PubMed  Google Scholar 

  • Cave AC, Brewer AC et al (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5–6):691–728

    CAS  PubMed  Google Scholar 

  • Cheng G, Cao Z et al (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140

    CAS  PubMed  Google Scholar 

  • Cheng G, Ritsick D et al (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 279(33):34250–34255

    CAS  PubMed  Google Scholar 

  • Costal F, Oliveira E et al (2013) Dual effect of advanced glycation end products in pancreatic islet apoptosis. Diabetes Metab Res Rev 29(4):296–307

    CAS  PubMed  Google Scholar 

  • Coughlan MT, Yap FY et al (2011) Advanced glycation end products are direct modulators of beta-cell function. Diabetes 60(10):2523–2532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cross AR, Rae J et al (1995) Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 270(29):17075–17077

    CAS  PubMed  Google Scholar 

  • Csanyi G, Cifuentes-Pagano E et al (2011) Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic Biol Med 51(6):1116–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cucoranu I, Clempus R et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907

    CAS  PubMed  Google Scholar 

  • Dahan I, Pick E (2012) Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “all that you did and did not want to know about Nox inhibitory peptides”. Cell Mol Life Sci 69(14):2283–2305

    CAS  PubMed  Google Scholar 

  • Dahan I, Issaeva I et al (2002) Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277(10):8421–8432

    CAS  PubMed  Google Scholar 

  • de Carvalho DD, Sadok A et al (2008) Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 122(8):1757–1764

    PubMed  Google Scholar 

  • De Deken X, Wang D et al (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275(30):23227–23233

    PubMed  Google Scholar 

  • DeLeo FR, Nauseef WM et al (1995) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270(44):26246–26251

    CAS  PubMed  Google Scholar 

  • Diatchuk V, Lotan O et al (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 272(20):13292–13301

    CAS  PubMed  Google Scholar 

  • Dupuy C, Kaniewski J et al (1989) NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers. Eur J Biochem 185(3):597–603

    CAS  PubMed  Google Scholar 

  • Dupuy C, Ohayon R et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 274(52):37265–37269

    CAS  PubMed  Google Scholar 

  • Dworakowski R, Alom-Ruiz SP et al (2008) NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol Rep 60(1):21–28

    CAS  PubMed  Google Scholar 

  • Edens WA, Sharling L et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154(4):879–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elsner M, Gehrmann W et al (2011) Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60(1):200–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan C, Katsuyama M et al (2005) Transactivation of the EGF receptor and a PI3 kinase-ATF-1 pathway is involved in the upregulation of NOX1, a catalytic subunit of NADPH oxidase. FEBS Lett 579(5):1301–1305

    CAS  PubMed  Google Scholar 

  • Finegold AA, Shatwell KP et al (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271(49):31021–31024

    CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    CAS  PubMed  Google Scholar 

  • Fransen M, Nordgren M et al (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822(9):1363–1373

    CAS  PubMed  Google Scholar 

  • Fu X, Beer DG et al (2006) cAMP-response element-binding protein mediates acid-induced NADPH oxidase NOX5-S expression in Barrett esophageal adenocarcinoma cells. J Biol Chem 281(29):20368–20382

    CAS  PubMed  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garrido AM, Griendling KK (2009) NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 302(2):148–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gattas MV, Forteza R et al (2009) Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic Biol Med 47(10):1450–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavazzi G, Banfi B et al (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580(2):497–504

    CAS  PubMed  Google Scholar 

  • Gehrmann W, Elsner M et al (2010) Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic beta-cells. Diabetes Obes Metab 12(Suppl 2):149–158

    CAS  PubMed  Google Scholar 

  • Geiszt M, Kopp JB et al (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geiszt M, Lekstrom K et al (2003a) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171(1):299–306

    CAS  PubMed  Google Scholar 

  • Geiszt M, Witta J et al (2003b) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17(11):1502–1504

    CAS  PubMed  Google Scholar 

  • Gianni D, Bohl B et al (2008) The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 19(7):2984–2994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gianni D, Taulet N et al (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5(10):981–993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giannoni E, Buricchi F et al (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Go YM, Gipp JJ et al (2004) H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. J Biol Chem 279(7):5837–5845

    CAS  PubMed  Google Scholar 

  • Goldstein BJ, Mahadev K et al (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54(2):311–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorin Y, Ricono JM et al (2003) Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 285(2):F219–F229

    CAS  PubMed  Google Scholar 

  • Graciano MF, Santos LR et al (2011) NAD(P)H oxidase participates in the palmitate-induced superoxide production and insulin secretion by rat pancreatic islets. J Cell Physiol 226(4):1110–1117

    CAS  PubMed  Google Scholar 

  • Grankvist K, Marklund SL et al (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199(2):393–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281(27):18269–18272

    CAS  PubMed  Google Scholar 

  • Guichard C, Moreau R et al (2008) NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 36(Pt 5):920–929

    CAS  PubMed  Google Scholar 

  • Harper RW, Xu C et al (2005) Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 579(21):4911–4917

    CAS  PubMed  Google Scholar 

  • Harper RW, Xu C et al (2006) Duox2 exhibits potent heme peroxidase activity in human respiratory tract epithelium. FEBS Lett 580(22):5150–5154

    CAS  PubMed  Google Scholar 

  • Heumuller S, Wind S et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51(2):211–217

    PubMed  Google Scholar 

  • Heyworth PG, Bohl BP et al (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269(49):30749–30752

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Cross AR et al (2003) Chronic granulomatous disease. Curr Opin Immunol 15(5):578–584

    CAS  PubMed  Google Scholar 

  • Hofmann SM, Dong HJ et al (2002) Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51(7):2082–2089

    CAS  PubMed  Google Scholar 

  • Hordijk PL (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98(4):453–462

    CAS  PubMed  Google Scholar 

  • Ibi M, Katsuyama M et al (2006) NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med 40(10):1785–1795

    CAS  PubMed  Google Scholar 

  • Ibi M, Matsuno K et al (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28(38):9486–9494

    CAS  PubMed  Google Scholar 

  • Imoto H, Sasaki N et al (2008) Impaired insulin secretion by diphenyleneiodium associated with perturbation of cytosolic Ca2+ dynamics in pancreatic beta-cells. Endocrinology 149(11):5391–5400

    CAS  PubMed  Google Scholar 

  • Jackson HM, Kawahara T et al (2010) Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 285(14):10281–10290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267(2):619–625

    CAS  PubMed  Google Scholar 

  • Jay DB, Papaharalambus CA et al (2008) Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med 45(3):329–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao J, Dou L et al (2012) NADPH oxidase 2 plays a critical role in dysfunction and apoptosis of pancreatic beta-cells induced by very low-density lipoprotein. Mol Cell Biochem 370(1–2):103–113

    CAS  PubMed  Google Scholar 

  • Johnson DK, Schillinger KJ et al (2002) Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols. Endothelium 9(3):191–203

    CAS  PubMed  Google Scholar 

  • Juhasz A, Ge Y et al (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues. Free Radic Res 43(6):523–532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamiguti AS, Serrander L et al (2005) Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia. J Immunol 175(12):8424–8430

    CAS  PubMed  Google Scholar 

  • Kaneto H, Fujii J et al (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J 320(Pt 3):855–863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuyama M, Fan C et al (2002) NADPH oxidase is involved in prostaglandin F2alpha-induced hypertrophy of vascular smooth muscle cells: induction of NOX1 by PGF2alpha. J Biol Chem 277(16):13438–13442

    CAS  PubMed  Google Scholar 

  • Kawahara T, Kohjima M et al (2005) Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 288(2):C450–C457

    CAS  PubMed  Google Scholar 

  • Kawamori D, Kajimoto Y et al (2003) Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 52(12):2896–2904

    CAS  PubMed  Google Scholar 

  • Kenyon V, Rai G et al (2011) Discovery of potent and selective inhibitors of human platelet-type 12- lipoxygenase. J Med Chem 54(15):5485–5497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinberg ME, Malech HL et al (1990) The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265(26):15577–15583

    CAS  PubMed  Google Scholar 

  • Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47(6):859–866

    CAS  PubMed  Google Scholar 

  • Krieger-Brauer HI, Kather H (1995) Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3 T3 L1-cells. Biochem J 307(Pt 2):549–556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar B, Koul S et al (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    CAS  PubMed  Google Scholar 

  • Kuroda J, Ago T et al (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107(35):15565–15570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusumoto K, Kawahara T et al (2005) Ecabet sodium inhibits Helicobacter pylori lipopolysaccharide-induced activation of NADPH oxidase 1 or apoptosis of guinea pig gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 288(2):G300–G307

    CAS  PubMed  Google Scholar 

  • Lafeber FP, Beukelman CJ et al (1999) Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology 38(11):1088–1093

    CAS  PubMed  Google Scholar 

  • Laleu B, Gaggini F et al (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53(21):7715–7730

    CAS  PubMed  Google Scholar 

  • Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43(3):332–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth JD, Kawahara T et al (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43(3):319–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lara-Ortiz T, Riveros-Rosas H et al (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50(4):1241–1255

    CAS  PubMed  Google Scholar 

  • Lassegue B, Sorescu D et al (2001) Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88(9):888–894

    CAS  PubMed  Google Scholar 

  • Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36(Pt 3):343–347

    CAS  PubMed  Google Scholar 

  • Lenzen S, Drinkgern J et al (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20(3):463–466

    CAS  PubMed  Google Scholar 

  • Li J, Stouffs M et al (2006) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17(9):3978–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Spencer NY et al (2009) Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxid Redox Signal 11(6):1249–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li N, Li B et al (2012) NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes 61(11):2842–2850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim M, Park L et al (2008) Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann N Y Acad Sci 1150:311–315

    CAS  PubMed  Google Scholar 

  • Lin HM, Lee JH et al (2009) Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function. J Biol Chem 284(18):12246–12257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin N, Zhang H et al (2012) Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. Diabetes Metab 38(3):250–257

    CAS  PubMed  Google Scholar 

  • Lupi R, Del Guerra S et al (2006) The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol 154(2):355–361

    CAS  PubMed  Google Scholar 

  • Mahadev K, Motoshima H et al (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24(5):1844–1854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malagnac F, Lalucque H et al (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41(11):982–997

    CAS  PubMed  Google Scholar 

  • Manea A (2010) NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res 342(3):325–339

    CAS  PubMed  Google Scholar 

  • Manea A, Manea SA et al (2012) Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radic Biol Med 52(9):1497–1507

    CAS  PubMed  Google Scholar 

  • Marino D, Dunand C et al (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15

    CAS  PubMed  Google Scholar 

  • Martyn KD, Frederick LM et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18(1):69–82

    CAS  PubMed  Google Scholar 

  • Marzban L, Verchere CB (2004) The role of islet amyloid polypeptide in type 2 diabetes. Can J Diabetes 28(4):39–47

    Google Scholar 

  • Matti A, Kyathanahalli C et al (2012) Protein farnesylation is requisite for mitochondrial fuel-induced insulin release: further evidence to link reactive oxygen species generation to insulin secretion in pancreatic beta-cells. Islets 4(1):74–77

    Google Scholar 

  • McDuffie M, Maybee NA et al (2008) Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protected from autoimmune diabetes. Diabetes 57(1):199–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng D, Lv DD et al (2008) Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells. Cardiovasc Res 80(2):299–308

    CAS  PubMed  Google Scholar 

  • Michalska M, Wolf G et al (2010) Effects of pharmacological inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2-induced mouse islet or clonal pancreatic beta-cell dysfunction. Biosci Rep 30(6):445–453

    CAS  PubMed  Google Scholar 

  • Miller FJ Jr, Filali M et al (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101(7):663–671

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S et al (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    CAS  PubMed  Google Scholar 

  • Miyano K, Ueno N et al (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281(31):21857–21868

    CAS  PubMed  Google Scholar 

  • Modak MA, Datar SP et al (2007) Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J Comp Physiol B 177(2):247–257

    CAS  PubMed  Google Scholar 

  • Mohammed AM, Kowluru A (2013) Activation of apocynin-sensitive NADPH oxidase (Nox2) activity in INS-1 832/13 cells under glucotoxic conditions. Islets 5(3):129–131

    PubMed  Google Scholar 

  • Montezano AC, Burger D et al (2010) Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 106(8):1363–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montezano AC, Burger D et al (2011) Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci 120(4):131–141

    CAS  PubMed  Google Scholar 

  • Morand S, Dos Santos OF et al (2003) Identification of a truncated dual oxidase 2 (DUOX2) messenger ribonucleic acid (mRNA) in two rat thyroid cell lines. Insulin and forskolin regulation of DUOX2 mRNA levels in FRTL-5 cells and porcine thyrocytes. Endocrinology 144(2):567–574

    CAS  PubMed  Google Scholar 

  • Morand S, Ueyama T et al (2009) Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23(4):1205–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan D, Oliveira-Emilio HR et al (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50(2):359–369

    CAS  PubMed  Google Scholar 

  • Morgan D, Rebelato E et al (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology 150(5):2197–2201

    CAS  PubMed  Google Scholar 

  • Murray TV, Smyrnias I et al (2013) NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 288(22):15745–15759

    CAS  PubMed  Google Scholar 

  • Nakayama M, Inoguchi T et al (2005) Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 332(4):927–933

    CAS  PubMed  Google Scholar 

  • Nauseef WM, McCormick S et al (1993) Functional domain in an arginine-rich carboxyl-terminal region of p47phox. J Biol Chem 268(31):23646–23651

    CAS  PubMed  Google Scholar 

  • Newsholme P, Morgan D et al (2009) Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52(12):2489–2498

    CAS  PubMed  Google Scholar 

  • Nisimoto Y, Motalebi S et al (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 274(33):22999–23005

    CAS  PubMed  Google Scholar 

  • Nisimoto Y, Tsubouchi R et al (2008) Activation of NADPH oxidase 1 in tumour colon epithelial cells. Biochem J 415(1):57–65

    CAS  PubMed  Google Scholar 

  • Ohneda K, Mirmira RG et al (2000) The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol 20(3):900–911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira HR, Verlengia R et al (2003) Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52(6):1457–1463

    CAS  PubMed  Google Scholar 

  • Orient A, Donko A et al (2007) Novel sources of reactive oxygen species in the human body. Nephrol Dial Transplant 22(5):1281–1288

    CAS  PubMed  Google Scholar 

  • Paffenholz R, Bergstrom RA et al (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18(5):486–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey D, Patel A et al (2012) Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. Am J Physiol Heart Circ Physiol 302(10):H1919–H1928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedruzzi E, Guichard C et al (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24(24):10703–10717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pendyala S, Gorshkova IA et al (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11(4):747–764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peppa M, He C et al (2003) Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes 52(6):1441–1448

    CAS  PubMed  Google Scholar 

  • Pi J, Bai Y et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56(7):1783–1791

    CAS  PubMed  Google Scholar 

  • Purves T, Middlemas A et al (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15(13):2508–2514

    CAS  PubMed  Google Scholar 

  • Rada B, Hably C et al (2008) Role of Nox2 in elimination of microorganisms. Semin Immunopathol 30(3):237–253

    CAS  PubMed  Google Scholar 

  • Rebelato E, Mares-Guia TR et al (2012) Expression of NADPH oxidase in human pancreatic islets. Life Sci 91(7–8):244–249

    CAS  PubMed  Google Scholar 

  • Rey FE, Cifuentes ME et al (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89(5):408–414

    CAS  PubMed  Google Scholar 

  • Rigutto S, Hoste C et al (2009) Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem 284(11):6725–6734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ris-Stalpers C (2006) Physiology and pathophysiology of the DUOXes. Antioxid Redox Signal 8(9–10):1563–1572

    CAS  PubMed  Google Scholar 

  • Rokutan K, Kawahara T et al (2006) NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. Antioxid Redox Signal 8(9–10):1573–1582

    CAS  PubMed  Google Scholar 

  • Rokutan K, Kawahara T et al (2008) Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 30(3):315–327

    CAS  PubMed  Google Scholar 

  • Rotrosen D, Kleinberg ME et al (1990) Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b558. J Biol Chem 265(15):8745–8750

    CAS  PubMed  Google Scholar 

  • Rotrosen D, Yeung CL et al (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256(5062):1459–1462

    CAS  PubMed  Google Scholar 

  • Sadok A, Bourgarel-Rey V et al (2008) Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta 1783(1):23–33

    CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141(2):336–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • San Martin A, Foncea R et al (2007) Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radic Biol Med 42(11):1671–1679

    CAS  PubMed  Google Scholar 

  • Sancho P, Fabregat I (2010) NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway. J Biol Chem 285(32):24815–24824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos CX, Tanaka LY et al (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–2427

    CAS  PubMed  Google Scholar 

  • Schildknecht S, Weber A et al (2013) The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite. Curr Med Chem 21:365–376

    CAS  PubMed  Google Scholar 

  • Schroder K, Wandzioch K et al (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29(2):239–245

    PubMed  Google Scholar 

  • Schulz E, Munzel T (2008) NOX5, a new “radical” player in human atherosclerosis? J Am Coll Cardiol 52(22):1810–1812

    CAS  PubMed  Google Scholar 

  • Sedeek M, Callera G et al (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358

    CAS  PubMed  Google Scholar 

  • Selemidis S, Sobey CG et al (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120(3):254–291

    CAS  PubMed  Google Scholar 

  • Serrander L, Cartier L et al (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406(1):105–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seshiah PN, Weber DS et al (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91(5):406–413

    CAS  PubMed  Google Scholar 

  • Shao J, Iwashita N et al (2006) Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. Biochem Biophys Res Commun 344(4):1224–1233

    CAS  PubMed  Google Scholar 

  • Shi J, Ross CR et al (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci U S A 93(12):6014–6018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiose A, Kuroda J et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276(2):1417–1423

    CAS  PubMed  Google Scholar 

  • Stolk J, Hiltermann TJ et al (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11(1):95–102

    CAS  PubMed  Google Scholar 

  • Sturrock A, Cahill B et al (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290(4):L661–L673

    CAS  PubMed  Google Scholar 

  • Sturrock A, Huecksteadt TP et al (2007) Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292(6):L1543–L1555

    CAS  PubMed  Google Scholar 

  • Suh YA, Arnold RS et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82

    CAS  PubMed  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275(13):3249–3277

    CAS  PubMed  Google Scholar 

  • Syed I, Kyathanahalli CN et al (2011a) Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 60(11):2843–2852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syed I, Kyathanahalli CN et al (2011b) Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: role of protein prenylation. Am J Physiol Regul Integr Comp Physiol 300(3):R756–R762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeya R, Ueno N et al (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278(27):25234–25246

    CAS  PubMed  Google Scholar 

  • Taylor-Fishwick DA, Pittenger GL et al (2008) Transplantation and beyond. Drug Dev Res 69:165–176

    CAS  Google Scholar 

  • ten Freyhaus H, Huntgeburth M et al (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71(2):331–341

    PubMed  Google Scholar 

  • Tiedge M, Lortz S et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46(11):1733–1742

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8(4):397–403

    CAS  PubMed  Google Scholar 

  • Touyz RM, Chen X et al (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90(11):1205–1213

    CAS  PubMed  Google Scholar 

  • Tudzynski P, Heller J et al (2012) Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 15(6):653–659

    CAS  PubMed  Google Scholar 

  • Uchizono Y, Takeya R et al (2006) Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci 80(2):133–139

    CAS  PubMed  Google Scholar 

  • Ueyama T, Geiszt M et al (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26(6):2160–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlinger DJ, Tyagi SR et al (1995) On the mechanism of inhibition of the neutrophil respiratory burst oxidase by a peptide from the C-terminus of the large subunit of cytochrome b558. Biochemistry 34(2):524–527

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71(2):226–235

    CAS  PubMed  Google Scholar 

  • Valente AJ, Yoshida T et al (2012) Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Am J Physiol Heart Circ Physiol 303(3):H282–H296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaquero EC, Edderkaoui M et al (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279(33):34643–34654

    CAS  PubMed  Google Scholar 

  • Vejrazka M, Micek R et al (2005) Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722(2):143–147

    CAS  PubMed  Google Scholar 

  • Volchuk A, Ron D (2010) The endoplasmic reticulum stress response in the pancreatic beta-cell. Diabetes Obes Metab 12(Suppl 2):48–57

    CAS  PubMed  Google Scholar 

  • Weaver JR, Taylor-Fishwick DA (2013) Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway. Mol Cell Endocrinol 369(1–2):35–41

    CAS  PubMed  Google Scholar 

  • Weaver JR, Holman TR et al (2012) Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol Cell Endocrinol 358(1):88–95

    CAS  PubMed  Google Scholar 

  • Wientjes FB, Hsuan JJ et al (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296(Pt 3):557–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wind S, Beuerlein K et al (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161(4):885–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wingler K, Wunsch S et al (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med 31(11):1456–1464

    CAS  PubMed  Google Scholar 

  • Xiang FL, Lu X et al (2010) NOX2 deficiency protects against streptozotocin-induced beta-cell destruction and development of diabetes in mice. Diabetes 59(10):2603–2611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ximenes VF, Kanegae MP et al (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457(2):134–141

    CAS  PubMed  Google Scholar 

  • Yang M, Foster E et al (2005) Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells. Am J Hypertens 18(10):1329–1334

    CAS  PubMed  Google Scholar 

  • Yuan H, Lu Y et al (2010a) Suppression of NADPH oxidase 2 substantially restores glucose-induced dysfunction of pancreatic NIT-1 cells. FEBS J 277(24):5061–5071

    CAS  PubMed  Google Scholar 

  • Yuan H, Zhang X et al (2010b) NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS One 5(12):e15726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Shan P et al (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116(11):3050–3059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Z, Zhao C et al (2009) Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology 150(6):2569–2576

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Taylor-Fishwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Weaver, J.R., Taylor-Fishwick, D.A. (2014). Role of NADPH Oxidase in Beta Cell Dysfunction. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_46-3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_46-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics