Skip to main content

Islet Encapsulation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

Type 1 diabetes is an autoimmune disorder that destroys the insulin-producing cells of the pancreas. The mainstay of treatment is replacement of insulin through injectable exogenous insulin. Improvements in islet isolation techniques and immunosuppression regimens have made islet transplants a treatment option for select patients. Islet transplants have improved graft function over the years; however, graft function beyond year two is rare and notably these patients require immunosuppression to prevent rejection. Cell encapsulation has been proposed for numerous cell types, but it has found increasing enthusiasm for islets. Since islet transplants have experienced a myriad of success, the next step is to improve graft function and avoid systemically toxic immunosuppressive regimens. Cell encapsulation hopes to accomplish this goal. Encapsulation involves placing cells in a semipermeable biocompatible hydrogel that allows the passage of nutrients and oxygen and however blocks immune regulators from destroying the cell, thus avoiding systemic drugs. Several advances in encapsulation engineering and cell viability promise to make this a revolutionary discovery. This paper provides a comprehensive review of cell encapsulation of islets for the treatment of type 1 diabetes including a historical outlook, current research, and future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 1:s5–s10

    Google Scholar 

  • Bachoud-Lévi A, Déglon N, Nguyen JP, Bloch J, Bourdet C, Winkel L, Rémy P, Goddard M, Lefaucheur J, Brugières P, Baudic S, Cesaro P, Peschanski M, Aebischer P (2000) Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 11:1723–1729

    Article  PubMed  Google Scholar 

  • Barton FB, Rickels MR, Alejandro R, Hering B, Wease S, Naziruddin B et al (2012) Improvement in outcomes of clinical islet transplantation. Diabetes Care 35:1436–1445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baruch L, Benny O, Gilbert A, Ukobnik O (2009) Alginate-PLL cell encapsulation system co-entrapping PLGA-microspheres for the continuous release of anti-inflammatory drugs. Biomed Microdevices 11:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Bisceglie V (1933) Uber die antineoplastische Immunität; heterologe Einpflanzung von Tumoren in Hühner-embryonen. Z Krebsforsch 40:122–140

    Article  Google Scholar 

  • Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100:998–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borg DJ, Bonifacio E (2011) The use of biomaterials in islet transplantation. Curr Diab Rep 11:434–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunger CM, Tiefenbach B, Jahnkea A, Gerlacha C, Freier T, Schmitz KP, Hopt UT, Schareck W, Klar E, De Vos P (2005) Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 26:2353–2360

    Article  CAS  PubMed  Google Scholar 

  • Calafiore R, Basta G, Luca G, Lemmi A, Montanucci P, Calabrese G, Racanicchi L, Mancuso F, Brunetti P (2006) Microencapsulated pancreatic islet allografts into non immunosuppressed patients with type diabetes: first two cases. Diabetes Care 29:1137–1139

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (2012) Centers for Disease Control and Prevention: Diabetes Public Health Resources. http://www.cdc.gov/diabetes. Accessed 1 Aug 2012

  • Chang T (1964) Semipermeable microcapsules. Science 156:524–525

    Article  Google Scholar 

  • Chick WL, Like AA, Lauris V (1975) 8-cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187:847–849

    Article  CAS  PubMed  Google Scholar 

  • De Vos P, De Haan BJ, Wolters GH, Strubbe JH, Van Schilfgaarde R (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40:262–270

    Article  PubMed  Google Scholar 

  • De Vos P, Van Straaten JF, Nieuwenhuizen AG, De Groot M, Ploeg RJ, De Haan BJ, Van Schilfgaarde R (1999) Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48:1381–1388

    Article  PubMed  Google Scholar 

  • Dong H, Fahmy TM, Metcalfe SM, Morton SL, Dong X, Inverardi L, Adams DB, Gao W, Wang H (2012) Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLoS One 7:e50265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dufrane D, Goebbels RM, Gianello P (2010) Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90:1054–1062

    Article  PubMed  Google Scholar 

  • Duvivier-Kali VF, Omer A, Lopez-Avalos MD, O’Neil JJ, Weir GC (2004) Survival of microencapsulated adult pig islets in mice in spite of an antibody response. Am J Transplant 12:1991–2000

    Article  Google Scholar 

  • Elliott RB, Living cell technologies Ltd-LCT (2011) In: International pancreas and islet transplant association meeting, Prague

    Google Scholar 

  • Elliott RB, Escobar L, Tan PL, Garkavenko O, Calafiore R, Basta P, Vasconcellos AV, Emerich DF, Thanos C, Bambra C (2005) Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 37:3505–3508

    Article  CAS  PubMed  Google Scholar 

  • Elliott RB, Escobar L, Tan PL et al (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14:157–161

    Article  PubMed  Google Scholar 

  • Elliott RB, Garkavenko O, Tan P, Skaletsky NN, Guliev A, Draznin B (2010) Transplantation of microencapsulated neonatal porcine islets in patients with type 1 diabetes: safety and efficacy.70th scientific sessions. American Diabetes Association, Orlando

    Google Scholar 

  • Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, Blennow K, Bogdanovic N, Jelic V, Kadir A, Nordberg A, Sundström E, Wahlund LO, Wall A, Wiberg M, Winblad B, Seiger A, Almqvist P, Wahlberg L (2012) Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 33:18–28

    Article  PubMed  Google Scholar 

  • Fernández M, Barcia E, Fernández-Carballido A, Garcia L, Slowing K, Negro S (2012) Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson’s disease. Int J Pharm 438:266–278

    Article  PubMed  Google Scholar 

  • Fiszman GL, Karara AL, Finocchiaro LM, Glikin GC (2002) A laboratory scale device for microencapsulation of genetically engineered cells into alginate beads. Electron J Biotechnol 5:23–24

    Google Scholar 

  • Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, Ponte G, Poggioli R, Cornejo A, Messinger S, Ricordi C, Alejandro R (2005) Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation 80:1718–1728

    Article  CAS  PubMed  Google Scholar 

  • Hearing B, Ricordi C (1999) Islet transplantation for patients for patients with type 1 diabetes; results, research priorities, and reasons for optimism. Graft 2:12–27

    Google Scholar 

  • Huber A, Padrun V, Deglon N, Aebischer P, Hanns M, Boison D (2012) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98:7611–7616

    Article  Google Scholar 

  • Jang JY, Lee DY, Park SJ, Byun Y (2004) Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets. Biomaterials 25:3663–3669

    Article  CAS  PubMed  Google Scholar 

  • Jeon Y (2011) Cell based therapy for the management of chronic pain. Korean J Anesthesiol 60:3–7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kadam S, Muthyala S, Nair P, Bhonde R (2010) Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 7:168–182

    Article  PubMed Central  PubMed  Google Scholar 

  • Khanna O, Moya EC, Opara EC, Brey EM (2010) Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 95:632–640

    Article  PubMed Central  PubMed  Google Scholar 

  • Khanna O, Larson JC, Moya ML, Opara EC, Brey EM (2012) Generation of alginate microspheres for biomedical applications. J Vis Exp 66:e3388

    Google Scholar 

  • King S, Dorian R, Storrs R (2001) Requirements for encapsulation technology and the challenges for transplantation of islets of Langerhans. Graft 4:491–499

    Article  Google Scholar 

  • King A, Lau J, Nordin A, Sandler S, Andersson A (2003) The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther 5:653–663

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Aomatsu Y, Iwata H, Kin T, Kanehiro H, Hisanaga M, Ko S, Nagao M, Nakajima Y (2003) Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 75:619–625

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Aomatsu Y, Iwata H, Kin T, Kanehiro H, Hisanga M, Ko S, Nagao M, Harb G, Nakajima Y (2006) Survival of microencapsulated islets at 400 days posttransplantation in the omental pouch of NOD mice. Cell Transplant 15:359–365

    Article  PubMed  Google Scholar 

  • Krishnamurthy NV, Gimi B (2011) Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit Rev Biomed Eng 39:473–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Borland KM, Lodge P, Carretta M, Sullivan SJ, Muller TE, Solomon BA, Maki T, Monaco AP, Chick WL (1992) Treatment of severely diabetic, pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes 41:886–889

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Jackson R, Sullivan A, Ringeling J, McGrath C, Kühtreiber W, Chick WL (1999) Xenotransplantation of cells using biodegradable microcapsules. Transplantation 67:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Mooney D (2000) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  Google Scholar 

  • Lee SH, Hao E, Savinov AY, Geron I, Strongin AY, Itkin-Ansari P (2009) Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation 87:983–991

    Article  PubMed Central  PubMed  Google Scholar 

  • Leung A, Lawrie G, Nielson LK, Trau M (2008) Synthesis and characterization of alginate/poly-l-ornithine/alginate microcapsules for local immunosuppression. J Microencapsul 25:387–398

    Article  CAS  PubMed  Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial pancreas. Science 210:908

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Ubhi CS, Sanchez-Farpon H, Sullivan SJ, Borland K, Muller TE, Solomon BA, Chick WL, Monaco AP (1991) Successful treatment of diabetes with the biohybrid artificial pancreas in dogs. Transplantation 51:43–51

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Otsu I, O’Neil JJ, Dunleavy K, Mullon CJ, Solomon BA, Monaco AP (1996) Treatment of diabetes by xenogeneic islets without immunosuppression. Use of a vascularized bioartificial pancreas. Diabetes 45:342–347

    Article  CAS  PubMed  Google Scholar 

  • Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299:13–20

    Article  Google Scholar 

  • Niclauss N, Bosco D, Morel P, Giovannoni L, Berney T, Parnaud G (2011) Rapamycin impairs proliferation of transplants islet β cells. Transplantation 91:714–722

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus G, Bryant S (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Sullivan ES, Johnson AS, Omer A, Hollister-Lock J, Bonner-Weir S, Colton CK, Weir GC (2010) Rat islet cell aggregates are superior to islets for transplantation in microcapsules. Diabetologia 53:937–945

    Article  PubMed  Google Scholar 

  • Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL (2012) Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A 109:4245–4250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro AM, Nanji SA, Lakey JR (2003) Clinical islet transplant: current and future directions towards tolerance. Immunol Rev 196:219–236

    Article  CAS  PubMed  Google Scholar 

  • Soon-Shiong P, Feldman E, Nelson R, Heintz R, Yao Q, Yao Z, Zheng T, Merideth N, Skjak-Braek G, Espevik T et al (1993) Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci U S A 90:5843–5847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  CAS  PubMed  Google Scholar 

  • Storrs R, Dorian R, King SR, Lakey J, Rilo H (2001) Preclinical development of the islet sheet. Ann N Y Acad Sci 944:252–266

    Article  CAS  PubMed  Google Scholar 

  • Sun AM (1988) Microencapsulation of pancreatic islet cells: a bioartificial endocrine pancreas. Methods Enzymol 137:575–580

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Bonner-Weir S, Trivedi N, Yoon KH, Hollister-Lock J, Colton CK, Weir GC (1998) Function and survival of macroencapsulated syngeneic islets transplanted into streptozocin-diabetic mice. Transplantation 66:21–28

    Article  CAS  PubMed  Google Scholar 

  • Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tze WJ, Cheung SC, Tai J, Ye H (1998) Assessment of the in vivo function of pig islets encapsulated in uncoated alginate microspheres. Transplant Proc 30:477–478

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lacík I, Brissová M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K, Powers AC (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15:358–362

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Adcock J, Kühtreiber W, Qiang D, Salleng KJ, Trenary I, Williams P (2008) Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85:331–337

    Article  PubMed  Google Scholar 

  • Xin ZL, Ge SL, Wu XK, Jia YJ, Hu HT (2005) Intracerebral xenotransplantation of semipermeable membrane-encapsuled pancreatic islets. World J Gastroenterol 11:5714–5717

    PubMed  Google Scholar 

  • Zimmermann H, Shirley SG, Zimmermann U (2007) Review Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7:314–320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. T. Lakey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lakey, J.R.T. et al. (2014). Islet Encapsulation. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_29-3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_29-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Islet Encapsulation
    Published:
    16 April 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_29-3

  2. Original

    Islet Encapsulation
    Published:
    14 February 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_29-2