Skip to main content

Immunology of β-Cell Destruction

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.
  • 128 Accesses

Abstract

The pancreatic islet β cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the β cells are reviewed to include the very first step of a triggering event that initiates the development of β-cell autoimmunity to the last step of appearance of islet cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial β-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established, the question is how β cells are progressively killed by autoreactive lymphocytes, which eventually results in chronic insulitis. These events have been examined in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations cannot always be translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aanstoot HJ, Kang SM, Kim J et al (1996) Identification and characterization of glima 38, a glycosylated islet cell membrane antigen, which together with GAD65 and IA2 marks the early phases of autoimmune response in type 1 diabetes. J Clin Invest 97(12):2772–2783

    PubMed Central  PubMed  CAS  Google Scholar 

  • Abreu JR, Martina S, Verrijn Stuart AA et al (2012) CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin Exp Immunol 170(1):57–65

    PubMed Central  PubMed  CAS  Google Scholar 

  • Abulafia-Lapid R, Gillis D, Yosef O, Atlan H, Cohen IR (2003) T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J Autoimmun 20(4):313–321

    PubMed  CAS  Google Scholar 

  • Achenbach P, Kelemen K, Wegmann DR, Hutton JC (2002) Spontaneous peripheral T-cell responses to the IA-2beta (phogrin) autoantigen in young nonobese diabetic mice. J Autoimmun 19(3):111–116

    PubMed  Google Scholar 

  • Akesson K, Nystrom L, Farnkvist L, Ostman J, Lernmark A, Kockum I (2005) Increased risk of diabetes among relatives of female insulin-treated patients diagnosed at 15–34 years of age. Diabet Med 22(11):1551–1557

    PubMed  CAS  Google Scholar 

  • Alkemade GM, Clemente-Casares X, Yu Z et al (2013) Local autoantigen expression as essential gatekeeper of memory T-cell recruitment to islet grafts in diabetic hosts. Diabetes 62(3):905–911

    PubMed Central  PubMed  CAS  Google Scholar 

  • Allen JS, Pang K, Skowera A et al (2009) Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58(1):138–145

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amigorena S, Bonnerot C (1998) Role of B-cell and Fc receptors in the selection of T-cell epitopes. Curr Opin Immunol 10(1):88–92

    PubMed  CAS  Google Scholar 

  • Andersson C, Larsson K, Vaziri-Sani F et al (2011) The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity 44(5):394–405

    PubMed  CAS  Google Scholar 

  • Andersson C, Vaziri-Sani F, Delli A et al (2013) Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes. Pediatr Diabetes 14(2):97–105

    PubMed  CAS  Google Scholar 

  • Arif S, Tree TI, Astill TP et al (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113(3):451–463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Atkinson MA, Gianani R (2009) The pancreas in human type 1 diabetes: providing new answers to age-old questions. Curr Opin Endocrinol Diabetes Obes 16(4):279–285

    PubMed  Google Scholar 

  • Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK (1994) Cellular immunity to a determinant common to glutamate decarboxylase and Coxsackie virus in insulin-dependent diabetes. J Clin Invest 94(5):2125–2129

    PubMed Central  PubMed  CAS  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69-82

    Google Scholar 

  • Bach JF (1997) Autoimmunity and type I diabetes. Trends Endocrinol Metab 8(2):71–74

    PubMed  CAS  Google Scholar 

  • Bach JF (2003) Regulatory T, cells under scrutiny. Nat Rev Immunol 3(3):189–198

    PubMed  Google Scholar 

  • Badenhoop K, Kahles H, Seidl C et al (2009) MHC-environment interactions leading to type 1 diabetes: feasibility of an analysis of HLA DR-DQ alleles in relation to manifestation periods and dates of birth. Diabetes Obes Metab 11(Suppl 1):88–91

    PubMed Central  PubMed  Google Scholar 

  • Baekkeskov S, Nielsen JH, Marner B, Bilde T, Ludvigsson J, Lernmark A (1982) Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 298(5870):167–169

    PubMed  CAS  Google Scholar 

  • Baekkeskov S, Aanstoot HJ, Christgau S et al (1990) Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347(6289):151–156

    PubMed  CAS  Google Scholar 

  • Baker C, de Marquesini LGP, Bishop AJ, Hedges AJ, Dayan CM, Wong FS (2008) Human CD8 responses to a complete epitope set from preproinsulin: implications for approaches to epitope discovery. J Clin Immunol 28(4):350–360

    PubMed  CAS  Google Scholar 

  • Barker JM (2006) Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab 91(4):1210–1217

    PubMed  CAS  Google Scholar 

  • Bennett ST, Todd JA (1996) Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 30:343–370

    PubMed  CAS  Google Scholar 

  • Bingley PJ, Gale EA (2006) Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 49(5):881–890

    PubMed  CAS  Google Scholar 

  • Blom L, Lundmark K, Dahlquist G, Persson LA (1989) Estimating children’s eating habits. Validity of a questionnaire measuring food frequency compared to a 7-day record. Acta Paediatr Scand 78(6):858–864

    PubMed  CAS  Google Scholar 

  • Blom L, Nystrom L, Dahlquist G (1991) The Swedish childhood diabetes study. Vaccinations and infections as risk determinants for diabetes in childhood. Diabetologia 34(3):176–181

    PubMed  CAS  Google Scholar 

  • Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2(7892):1279–1283

    PubMed  CAS  Google Scholar 

  • Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313(6):353–360

    PubMed  CAS  Google Scholar 

  • Brooks-Worrell BM, Nielson D, Palmer JP (1999) Insulin autoantibodies and insulin antibodies have similar binding characteristics. Proc Assoc Am Physicians 111(1):92–96

    PubMed  CAS  Google Scholar 

  • Brusko T, Wasserfall C, McGrail K et al (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56(3):604–612

    PubMed  CAS  Google Scholar 

  • Buschard K, Josefsen K, Horn T, Fredman P (1993) Sulphatide and sulphatide antibodies in insulin-dependent diabetes mellitus. Lancet 342(8875):840

    PubMed  CAS  Google Scholar 

  • Campbell-Thompson M, Wasserfall C, Kaddis J et al (2012) Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev 28(7):608–617

    PubMed Central  PubMed  Google Scholar 

  • Campbell-Thompson ML, Atkinson MA, Butler AE et al (2013) The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56(11):2541–2543

    PubMed  CAS  Google Scholar 

  • Castano L, Russo E, Zhou L, Lipes MA, Eisenbarth GS (1991) Identification and cloning of a granule autoantigen (carboxypeptidase-H) associated with type I diabetes. J Clin Endocrinol Metab 73(6):1197–1201

    PubMed  CAS  Google Scholar 

  • Cernea S, Herold KC (2010) Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin Immunol 134(2):121–129

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chang YH, Hwang J, Shang HF, Tsai ST (1996) Characterization of human DNA topoisomerase II as an autoantigen recognized by patients with IDDM. Diabetes 45(4):408–414

    PubMed  CAS  Google Scholar 

  • Chang YH, Shiau MY, Tsai ST, Lan MS (2004) Autoantibodies against IA-2, GAD, and topoisomerase II in type 1 diabetic patients. Biochem Biophys Res Commun 320(3):802–809

    PubMed  CAS  Google Scholar 

  • Chen W, Bergerot I, Elliott JF et al (2001) Evidence that a peptide spanning the B-C junction of proinsulin is an early Autoantigen epitope in the pathogenesis of type 1 diabetes. J Immunol 167(9):4926–4935

    PubMed  CAS  Google Scholar 

  • Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26(1):1–11

    PubMed  CAS  Google Scholar 

  • Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337

    PubMed  CAS  Google Scholar 

  • Christgau S, Schierbeck H, Aanstoot HJ et al (1991) Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem 266(34):23516

    PubMed  CAS  Google Scholar 

  • Christie MR (1993) Characterization of distinct islet protein autoantigens associated with type 1 diabetes. Autoimmunity 15(Suppl):1–3

    PubMed  Google Scholar 

  • Concannon P, Erlich HA, Julier C et al (2005) Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes 54(10):2995–3001

    PubMed  CAS  Google Scholar 

  • Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360(16):1646–1654

    PubMed  CAS  Google Scholar 

  • Dahlquist G, Blom L, Tuvemo T, Nystrom L, Sandstrom A, Wall S (1989) The Swedish childhood diabetes study – results from a nine year case register and a one year case-referent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 32(1):2–6

    PubMed  CAS  Google Scholar 

  • Dahlquist GG, Blom LG, Persson LA, Sandstrom AI, Wall SG (1990) Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 300(6735):1302–1306

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dahlquist GG, Patterson C, Soltesz G (1999a) Perinatal risk factors for childhood type 1 diabetes in Europe. The EURODIAB Substudy 2 Study Group. Diabetes Care 22(10):1698–1702

    PubMed  CAS  Google Scholar 

  • Dahlquist GG, Boman JE, Juto P (1999b) Enteroviral RNA and IgM antibodies in early pregnancy and risk for childhood-onset IDDM in offspring. Diabetes Care 22(2):364–365

    PubMed  CAS  Google Scholar 

  • Dang M, Rockell J, Wagner R et al (2011) Human type 1 diabetes is associated with T cell autoimmunity to zinc transporter 8. J Immunol 186(10):6056–6063

    PubMed Central  PubMed  CAS  Google Scholar 

  • Danke NA, Yang J, Greenbaum C, Kwok WW (2005) Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J Autoimmun 25(4):303–311

    PubMed  CAS  Google Scholar 

  • Delli AJ, Vaziri-Sani F, Lindblad B et al (2012) Zinc transporter 8 autoantibodies and their association with SLC30A8 and HLA-DQ genes differ between immigrant and Swedish patients with newly diagnosed type 1 diabetes in the better diabetes diagnosis study. Diabetes 61(10):2556–2564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Diez J, Park Y, Zeller M et al (2001) Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes 50(4):895–900

    PubMed  CAS  Google Scholar 

  • Dobersen MJ, Scharff JE, Ginsberg-Fellner F, Notkins AL (1980) Cytotoxic autoantibodies to beta cells in the serum of patients with insulin-dependent diabetes mellitus. N Engl J Med 303(26):1493–1498

    PubMed  CAS  Google Scholar 

  • Dotta F, Falorni A, Tiberti C et al (1997) Autoantibodies to the GM2-1 islet ganglioside and to GAD-65 at type 1 diabetes onset. J Autoimmun 10(6):585–588

    PubMed  CAS  Google Scholar 

  • Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104(12):5115–5120

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dudda JC, Martin SF (2004) Tissue targeting of T cells by DCs and microenvironments. Trends Immunol 25(8):417–421

    PubMed  CAS  Google Scholar 

  • Eisenbarth GS (1986) Type I, diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314(21):1360–1368

    PubMed  CAS  Google Scholar 

  • Eisenbarth GS, Jeffrey J (2008) The natural history of type 1A diabetes. Arq Bras Endocrinol Metabol 52(2):146–155

    PubMed  Google Scholar 

  • Elding Larsson H, Vehik K, Gesualdo P et al (2014) Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease. Pediatr Diabetes 15:118-26

    Google Scholar 

  • Endl J, Otto H, Jung G et al (1997) Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J Clin Invest 99(10):2405–2415

    PubMed Central  PubMed  CAS  Google Scholar 

  • Esposti MD, Ngo A, Myers MA (1996) Inhibition of mitochondrial complex I may account for IDDM induced by intoxication with the rodenticide Vacor. Diabetes 45(11):1531–1534

    PubMed  CAS  Google Scholar 

  • EURODIAB ACE Study Group (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet 355(9207):873–876

    Google Scholar 

  • Faresjo MK, Vaarala O, Thuswaldner S, Ilonen J, Hinkkanen A, Ludvigsson J (2006) Diminished IFN-gamma response to diabetes-associated autoantigens in children at diagnosis and during follow up of type 1 diabetes. Diabetes Metab Res Rev 22(6):462–470

    PubMed  Google Scholar 

  • Fenalti G, Buckle AM (2010) Structural biology of the GAD autoantigen. Autoimmun Rev 9(3):148–152

    PubMed  CAS  Google Scholar 

  • Fenalti G, Hampe CS, Arafat Y et al (2008) COOH-terminal clustering of autoantibody and T-cell determinants on the structure of GAD65 provide insights into the molecular basis of autoreactivity. Diabetes 57(5):1293–1301

    PubMed  CAS  Google Scholar 

  • Foulis AK, McGill M, Farquharson MA (1991) Insulitis in type 1 (insulin-dependent) diabetes mellitus in man–macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol 165(2):97–103

    PubMed  CAS  Google Scholar 

  • Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31(8):1546–1549

    PubMed Central  PubMed  Google Scholar 

  • Gambelunghe G, Ghaderi M, Cosentino A, Falorni A, Brunetti P, Sanjeevi CB (2000) Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetologia 43(4):507–514

    PubMed  CAS  Google Scholar 

  • Gambineri E, Torgerson TR, Ochs HD (2003) Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 15(4):430–435

    PubMed  CAS  Google Scholar 

  • Garcia CA, Prabakar KR, Diez J et al (2005) Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J Immunol 175(4):2111–2122

    PubMed  CAS  Google Scholar 

  • Geenen V, Mottet M, Dardenne O et al (2010) Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes. Curr Opin Pharmacol 10(4):461–472

    PubMed  CAS  Google Scholar 

  • Geluk A, van Meijgaarden KE, Schloot NC, Drijfhout JW, Ottenhoff TH, Roep BO (1998) HLA-DR binding analysis of peptides from islet antigens in IDDM. Diabetes 47(10):1594–1601

    PubMed  CAS  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14(10):619–633

    PubMed  CAS  Google Scholar 

  • Gepts W, De Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–261

    PubMed  Google Scholar 

  • Gepts W, Lecompte PM (1981) The pancreatic islets in diabetes. Am J Med 70(1):105–115

    PubMed  CAS  Google Scholar 

  • Graham J, Hagopian WA, Kockum I et al (2002) Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 51(5):1346–1355

    PubMed  CAS  Google Scholar 

  • Greening JE, Tree TI, Kotowicz KT et al (2003) Processing and presentation of the islet autoantigen GAD by vascular endothelial cells promotes transmigration of autoreactive T-cells. Diabetes 52(3):717–725

    PubMed  CAS  Google Scholar 

  • Gregersen PK (2005) Gaining insight into PTPN22 and autoimmunity. Nat Genet 37(12):1300–1302

    PubMed  CAS  Google Scholar 

  • Hagopian WA, Sanjeevi CB, Kockum I et al (1995) Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95(4):1505–1511

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hagopian WA, Erlich H, Lernmark A et al (2011) The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes 12(8):733–743

    PubMed Central  PubMed  Google Scholar 

  • Hampe CS, Hammerle LP, Bekris L et al (2000) Recognition of glutamic acid decarboxylase (GAD) by autoantibodies from different GAD antibody-positive phenotypes. J Clin Endocrinol Metab 85(12):4671–4679

    PubMed  CAS  Google Scholar 

  • Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O (1992) Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest 90(5):1901–1910

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hanninen A, Soilu-Hanninen M, Hampe CS et al (2010) Characterization of CD4+ T cells specific for glutamic acid decarboxylase (GAD65) and proinsulin in a patient with stiff-person syndrome but without type 1 diabetes. Diabetes Metab Res Rev 26(4):271–279

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harfouch-Hammoud E, Walk T, Otto H et al (1999) Identification of peptides from autoantigens GAD65 and IA-2 that bind to HLA class II molecules predisposing to or protecting from type 1 diabetes. Diabetes 48(10):1937–1947

    PubMed  CAS  Google Scholar 

  • Hatfield EC, Hawkes CJ, Payton MA, Christie MR (1997) Cross reactivity between IA-2 and phogrin/IA-2beta in binding of autoantibodies in IDDM. Diabetologia 40(11):1327–1333

    PubMed  CAS  Google Scholar 

  • Helmke K, Otten A, Willems WR et al (1986) Islet cell antibodies and the development of diabetes mellitus in relation to mumps infection and mumps vaccination. Diabetologia 29(1):30–33

    PubMed  CAS  Google Scholar 

  • Heninger AK, Monti P, Wilhelm C et al (2013) Activation of islet autoreactive naive T cells in infants is influenced by homeostatic mechanisms and antigen-presenting capacity. Diabetes 62(6):2059–2066

    PubMed  CAS  Google Scholar 

  • Hermann R, Lipponen K, Kiviniemi M et al (2006) Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 49(6):1198–1208

    PubMed  CAS  Google Scholar 

  • Hernandez J, Aung S, Redmond WL, Sherman LA (2001) Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 194(6):707–717

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herold KC, Brooks-Worrell B, Palmer J et al (2009) Validity and reproducibility of measurement of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 58(11):2588–2595

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hirai H, Miura J, Hu Y et al (2008) Selective screening of secretory vesicle-associated proteins for autoantigens in type 1 diabetes: VAMP2 and NPY are new minor autoantigens. Clin Immunol 127(3):366–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hjorth M, Axelsson S, Ryden A, Faresjo M, Ludvigsson J, Casas R (2011) GAD-alum treatment induces GAD65-specific CD4 + CD25highFOXP3+ cells in type 1 diabetic patients. Clin Immunol 138(1):117–126

    PubMed  CAS  Google Scholar 

  • Honeyman MC, Stone NL, Harrison LC (1998) T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4(4):231–239

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367(1):92–101

    PubMed  CAS  Google Scholar 

  • Imagawa A, Hanafusa T, Tamura S et al (2001) Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes 50(6):1269–1273

    PubMed  CAS  Google Scholar 

  • In’t Veld P, Lievens D, De Grijse J et al (2007) Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 56(9):2400–2404

    PubMed  Google Scholar 

  • Itoh M (1989) Immunological aspects of diabetes mellitus: prospects for pharmacological modification. Pharmacol Ther 44(3):351–406

    PubMed  CAS  Google Scholar 

  • Jarchum I, Nichol L, Trucco M, Santamaria P, DiLorenzo TP (2008) Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol 127(3):359–365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jaume JC, Parry SL, Madec AM, Sonderstrup G, Baekkeskov S (2002) Suppressive effect of glutamic acid decarboxylase 65-specific autoimmune B lymphocytes on processing of T cell determinants located within the antibody epitope. J Immunol 169(2):665–672

    PubMed  CAS  Google Scholar 

  • Jun HS, Yoon JW (1994) Initiation of autoimmune type 1 diabetes and molecular cloning of a gene encoding for islet cell-specific 37kd autoantigen. Adv Exp Med Biol 347:207–220

    PubMed  CAS  Google Scholar 

  • Kanatsuna N, Taneera J, Vaziri-Sani F et al (2013) Autoimmunity against INS-IGF2 expressed in human pancreatic islets. J Biol Chem 288:29013–29023

    PubMed  CAS  Google Scholar 

  • Karam JH, Lewitt PA, Young CW et al (1980) Insulinopenic diabetes after rodenticide (Vacor) ingestion: a unique model of acquired diabetes in man. Diabetes 29(12):971–978

    PubMed  CAS  Google Scholar 

  • Karlsen AE, Hagopian WA, Grubin CE et al (1991) Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci U S A 88(19):8337–8341

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karlsen AE, Hagopian WA, Petersen JS et al (1992) Recombinant glutamic acid decarboxylase (representing the single isoform expressed in human islets) detects IDDM-associated 64,000-M(r) autoantibodies. Diabetes 41(10):1355–1359

    PubMed  CAS  Google Scholar 

  • Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 23(10):1516–1526

    PubMed  CAS  Google Scholar 

  • Kawasaki E, Eisenbarth GS, Wasmeier C, Hutton JC (1996) Autoantibodies to protein tyrosine phosphatase-like proteins in type I diabetes. Overlapping specificities to phogrin and ICA512/IA-2. Diabetes 45(10):1344–1349

    PubMed  CAS  Google Scholar 

  • Kelemen K, Gottlieb PA, Putnam AL, Davidson HW, Wegmann DR, Hutton JC (2004) HLA-DQ8-associated T cell responses to the diabetes autoantigen phogrin (IA-2 beta) in human prediabetes. J Immunol 172(6):3955–3962

    PubMed  CAS  Google Scholar 

  • Kerokoski P, Ilonen J, Gaedigk R et al (1999) Production of the islet cell antigen ICA69 (p69) with baculovirus expression system: analysis with a solid-phase time-resolved fluorescence method of sera from patients with IDDM and rheumatoid arthritis. Autoimmunity 29(4):281–289

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Tanaka S, Okubo M, Nakanishi K, Murase T, Lernmark A (2003) Unique epitopes of glutamic acid decarboxylase autoantibodies in slowly progressive type 1 diabetes. J Clin Endocrinol Metab 88(10):4768–4775

    PubMed  CAS  Google Scholar 

  • Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    PubMed  CAS  Google Scholar 

  • Kubosaki A, Nakamura S, Notkins AL (2005) Dense core vesicle proteins IA-2 and IA-2beta: metabolic alterations in double knockout mice. Diabetes 54(Suppl 2):S46–S51

    PubMed  CAS  Google Scholar 

  • Kukko M, Kimpimaki T, Korhonen S et al (2005) Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 90(5):2712–2717

    PubMed  CAS  Google Scholar 

  • Lamb MM, Yin X, Barriga K et al (2008) Dietary glycemic index, development of islet autoimmunity, and subsequent progression to type 1 diabetes in young children. J Clin Endocrinol Metab 93(10):3936–3942

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lampeter ER, Kishimoto TK, Rothlein R et al (1992) Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 41(12):1668–1671

    PubMed  CAS  Google Scholar 

  • Lan MS, Lu J, Goto Y, Notkins AL (1994) Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5):505–514

    PubMed  CAS  Google Scholar 

  • Lan MS, Wasserfall C, Maclaren NK, Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 93(13):6367–6370

    PubMed Central  PubMed  CAS  Google Scholar 

  • Landin-Olsson M, Hillman M, Erlanson-Albertsson C (2013) Is type 1 diabetes a food-induced disease? Med Hypotheses 81(2):338–342

    PubMed  Google Scholar 

  • Lee HS, Briese T, Winkler C et al (2013) Next-generation sequencing for viruses in children with rapid-onset type 1 diabetes. Diabetologia 56(8):1705–1711

    PubMed  CAS  Google Scholar 

  • Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106(35):14872–14877

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lernmark A, Larsson HE (2013) Immune therapy in type 1 diabetes mellitus. Nat Rev Endocrinol 9(2):92–103

    PubMed  CAS  Google Scholar 

  • Lernmark A, Freedman ZR, Hofmann C et al (1978) Islet-cell-surface antibodies in juvenile diabetes mellitus. N Engl J Med 299(8):375–380

    PubMed  CAS  Google Scholar 

  • Lernmark A, Kloppel G, Stenger D et al (1995) Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Arch 425(6):631–640

    PubMed  CAS  Google Scholar 

  • Lindehammer SR, Hansson I, Midberg B et al (2011) Seroconversion to islet autoantibodies between early pregnancy and delivery in non-diabetic mothers. J Reprod Immunol 88(1):72–79

    PubMed  CAS  Google Scholar 

  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1):92–99

    PubMed  CAS  Google Scholar 

  • Lio D, Candore G, Romano GC et al (1997) Modification of cytokine patterns in subjects bearing the HLA-B8, DR3 phenotype: implications for autoimmunity. Cytokines Cell Mol Ther 3(4):217–224

    PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    PubMed  CAS  Google Scholar 

  • Mallone R, Scotto M, Janicki CN et al (2011a) Immunology of Diabetes Society T-cell workshop: HLA class I tetramer-directed epitope validation initiative T-cell workshop report – HLA class I tetramer validation initiative. Diabetes Metab Res Rev 27(8):720–726

    PubMed  CAS  Google Scholar 

  • Mallone R, Brezar V, Boitard C (2011b) T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011:513210

    Google Scholar 

  • Mannering SI, Pang SH, Williamson NA et al (2009) The A-chain of insulin is a hot-spot for CD4+ T cell epitopes in human type 1 diabetes. Clin Exp Immunol 156(2):226–231

    PubMed Central  PubMed  CAS  Google Scholar 

  • Marshall MO, Hoyer PE, Petersen JS et al (1994) Contribution of glutamate decarboxylase antibodies to the reactivity of islet cell cytoplasmic antibodies. J Autoimmun 7(4):497–508

    PubMed  CAS  Google Scholar 

  • Maziarz M, Janer M, Roach JC et al (2010) The association between the PTPN22 1858C > T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies. Genes Immun 11(5):406–415

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mollah ZU, Pai S, Moore C et al (2008) Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 180(5):3166–3175

    PubMed  CAS  Google Scholar 

  • Monti P, Scirpoli M, Rigamonti A et al (2007) Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 179(9):5785–5792

    PubMed  CAS  Google Scholar 

  • Monti P, Heninger AK, Bonifacio E (2009) Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep 9(2):113–118

    PubMed  CAS  Google Scholar 

  • Myers MA, Hettiarachchi KD, Ludeman JP, Wilson AJ, Wilson CR, Zimmet PZ (2003) Dietary microbial toxins and type 1 diabetes. Ann N Y Acad Sci 1005:418–422

    PubMed  CAS  Google Scholar 

  • Nagata M, Kotani R, Moriyama H, Yokono K, Roep BO, Peakman M (2004) Detection of autoreactive T cells in type 1 diabetes using coded autoantigens and an immunoglobulin-free cytokine ELISPOT assay: report from the fourth immunology of diabetes society T cell workshop. Ann N Y Acad Sci 1037:10–15

    PubMed  CAS  Google Scholar 

  • Nepom GT (2012) MHC class II tetramers. J Immunol 188(6):2477–2482

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nepom GT, Buckner JH (2012) A functional framework for interpretation of genetic associations in T1D. Curr Opin Immunol 24(5):516–521

    PubMed  CAS  Google Scholar 

  • Nerup J, Binder C (1973) Thyroid, gastric and adrenal auto-immunity in diabetes mellitus. Acta Endocrinol (Copenh) 72(2):279–286

    CAS  Google Scholar 

  • Nerup J, Andersen OO, Bendixen G et al (1973) Anti-pancreatic, cellular hypersensitivity in diabetes mellitus. Experimental induction of anti-pancreatic, cellular hypersensitivity and associated morphological B-cell changes in the rat. Acta Allergol 28(4):231–249

    PubMed  CAS  Google Scholar 

  • Nerup J, Platz P, Andersen OO et al (1974) HL-A antigens and diabetes mellitus. Lancet 2(7885):864–866

    PubMed  CAS  Google Scholar 

  • Nerup J, Christy M, Kromann H et al (1979) HLA and insulin-dependent diabetes mellitus. Postgrad Med J 55(Suppl 2):8–13

    PubMed  Google Scholar 

  • Nicoletti F, Conget I, Di Mauro M et al (2002) Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45(8):1107–1110

    PubMed  CAS  Google Scholar 

  • Nielsen LB, Mortensen HB, Chiarelli F et al (2006) Impact of IDDM2 on disease pathogenesis and progression in children with newly diagnosed type 1 diabetes: reduced insulin antibody titres and preserved beta cell function. Diabetologia 49(1):71–74

    PubMed  CAS  Google Scholar 

  • Oak S, Gilliam LK, Landin-Olsson M et al (2008) The lack of anti-idiotypic antibodies, not the presence of the corresponding autoantibodies to glutamate decarboxylase, defines type 1 diabetes. Proc Natl Acad Sci U S A 105(14):5471–5476

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oikarinen M, Tauriainen S, Oikarinen S et al (2012) Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 61(3):687–691

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oling V, Reijonen H, Simell O, Knip M, Ilonen J (2012) Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cell Immunol 273(2):133–139

    PubMed  CAS  Google Scholar 

  • Onkamo P, Vaananen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of type 1 diabetes – the analysis of the data on published incidence trends. Diabetologia 42(12):1395–1403

    PubMed  CAS  Google Scholar 

  • Ortqvist E, Brooks-Worrell B, Lynch K et al (2010) Changes in GAD65Ab-specific antiidiotypic antibody levels correlate with changes in C-peptide levels and progression to islet cell autoimmunity. J Clin Endocrinol Metab 95(11):E310–E318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Osugi Y, Vuckovic S, Hart DN (2002) Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100(8):2858–2866

    PubMed  CAS  Google Scholar 

  • Owerbach D, Lernmark A, Platz P et al (1983) HLA-D region beta-chain DNA endonuclease fragments differ between HLA-DR identical healthy and insulin-dependent diabetic individuals. Nature 303(5920):815–817

    PubMed  CAS  Google Scholar 

  • Ozawa Y, Kasuga A, Nomaguchi H et al (1996) Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J Autoimmun 9(4):517–524

    PubMed  CAS  Google Scholar 

  • Padoa CJ, Banga JP, Madec AM et al (2003) Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. Diabetes 52(11):2689–2695

    PubMed  CAS  Google Scholar 

  • Palmer JP, Asplin CM, Clemons P et al (1983) Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222(4630):1337–1339

    PubMed  CAS  Google Scholar 

  • Parikka V, Nanto-Salonen K, Saarinen M et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55(7):1926–1936

    PubMed  CAS  Google Scholar 

  • Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175

    PubMed  CAS  Google Scholar 

  • Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 373(9680):2027–2033

    PubMed  Google Scholar 

  • Peakman M, Stevens EJ, Lohmann T et al (1999) Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest 104(10):1449–1457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peakman M, Tree TI, Endl J, van Endert P, Atkinson MA, Roep BO (2001) Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell assays in type 1 diabetes. Diabetes 50(8):1749–1754

    PubMed  CAS  Google Scholar 

  • Pietropaolo M, Castano L, Babu S et al (1993) Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen. J Clin Invest 92(1):359–371

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pihoker C, Gilliam LK, Hampe CS, Lernmark A (2005) Autoantibodies in diabetes. Diabetes 54(Suppl 2):S52–S61

    PubMed  CAS  Google Scholar 

  • Pociot F, Akolkar B, Concannon P et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59(7):1561–1571

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pugliese A, Zeller M, Fernandez A Jr et al (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15(3):293–297

    PubMed  CAS  Google Scholar 

  • Pugliese A, Brown D, Garza D et al (2001) Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest 107(5):555–564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qin HY, Mahon JL, Atkinson MA, Chaturvedi P, Lee-Chan E, Singh B (2003) Type 1 diabetes alters anti-hsp90 autoantibody isotype. J Autoimmun 20(3):237–245

    PubMed  CAS  Google Scholar 

  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    PubMed  CAS  Google Scholar 

  • Reijonen H, Mallone R, Heninger AK et al (2004) GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 53(8):1987–1994

    PubMed  CAS  Google Scholar 

  • Resic-Lindehammer S, Larsson K, Ortqvist E et al (2008) Temporal trends of HLA genotype frequencies of type 1 diabetes patients in Sweden from 1986 to 2005 suggest altered risk. Acta Diabetol 45(4):231–235

    PubMed  CAS  Google Scholar 

  • Rich SS, Akolkar B, Concannon P et al (2009) Overview of the type I diabetes genetics consortium. Genes Immun 10(Suppl 1):S1–S4

    PubMed Central  PubMed  Google Scholar 

  • Richter W, Shi Y, Baekkeskov S (1993) Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc Natl Acad Sci U S A 90(7):2832–2836

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rodacki M, Milech A, de Oliveira JE (2006) NK cells and type 1 diabetes. Clin Dev Immunol 13(2–4):101–107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rodacki M, Svoren B, Butty V et al (2007) Altered natural killer cells in type 1 diabetic patients. Diabetes 56(1):177–185

    PubMed  CAS  Google Scholar 

  • Roep BO, Peakman M (2011) Diabetogenic T lymphocytes in human Type 1 diabetes. Curr Opin Immunol 23(6):746–753

    PubMed  CAS  Google Scholar 

  • Roep BO, Peakman M (2012) Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2(4):a007781

    PubMed Central  PubMed  Google Scholar 

  • Rolandsson O, Hagg E, Hampe C et al (1999) Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass index. Diabetologia 42(5):555–559

    PubMed  CAS  Google Scholar 

  • Rudy G, Stone N, Harrison LC et al (1995) Similar peptides from two beta cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol Med 1(6):625–633

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    PubMed  CAS  Google Scholar 

  • Sanda S, Roep BO, von Herrath M (2008) Islet antigen specific IL-10+ immune responses but not CD4 + CD25 + FoxP3+ cells at diagnosis predict glycemic control in type 1 diabetes. Clin Immunol 127(2):138–143

    PubMed  CAS  Google Scholar 

  • Sanjeevi CB, Lybrand TP, DeWeese C et al (1995) Polymorphic amino acid variations in HLA-DQ are associated with systematic physical property changes and occurrence of IDDM. Members of the Swedish Childhood Diabetes Study. Diabetes 44(1):125–131

    PubMed  CAS  Google Scholar 

  • Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV (2003) Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med 197(5):643–656

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schloot NC, Roep BO, Wegmann DR, Yu L, Wang TB, Eisenbarth GS (1997) T-cell reactivity to GAD65 peptide sequences shared with coxsackie virus protein in recent-onset IDDM, post-onset IDDM patients and control subjects. Diabetologia 40(3):332–338

    PubMed  CAS  Google Scholar 

  • Seyfert-Margolis V, Gisler TD, Asare AL et al (2006) Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 55(9):2588–2594

    PubMed  CAS  Google Scholar 

  • Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28(1):18–28

    PubMed  CAS  Google Scholar 

  • Sibley RK, Sutherland DE, Goetz F, Michael AF (1985) Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest 53(2):132–144

    PubMed  CAS  Google Scholar 

  • Skarstrand H, Dahlin LB, Lernmark A, Vaziri-Sani F (2013a) Neuropeptide Y autoantibodies in patients with long-term type 1 and type 2 diabetes and neuropathy. J Diabetes Complications 27:609–617

    PubMed  Google Scholar 

  • Skarstrand H, Lernmark A, Vaziri-Sani F (2013b) Antigenicity and epitope specificity of ZnT8 autoantibodies in type 1 diabetes. Scand J Immunol 77(1):21–29

    PubMed  CAS  Google Scholar 

  • Skowera A, Ellis RJ, Varela-Calvino R et al (2008) CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 118(10):3390–3402

    PubMed Central  PubMed  CAS  Google Scholar 

  • Somoza N, Vargas F, Roura-Mir C et al (1994) Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol 153(3):1360–1377

    PubMed  CAS  Google Scholar 

  • Sosenko JM, Skyler JS, Palmer JP et al (2011a) A longitudinal study of GAD65 and ICA512 autoantibodies during the progression to type 1 diabetes in Diabetes Prevention Trial-Type 1 (DPT-1) participants. Diabetes Care 34(11):2435–2437

    PubMed Central  PubMed  Google Scholar 

  • Sosenko JM, Skyler JS, Mahon J et al (2011b) Validation of the Diabetes Prevention Trial-Type 1 Risk Score in the TrialNet Natural History Study. Diabetes Care 34(8):1785–1787

    PubMed Central  PubMed  Google Scholar 

  • Sosenko JM, Skyler JS, Palmer JP et al (2013) The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care 36:2615–2620

    PubMed  Google Scholar 

  • Standifer NE, Ouyang Q, Panagiotopoulos C et al (2006) Identification of Novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 55(11):3061–3067

    PubMed  CAS  Google Scholar 

  • Steed J, Gilliam LK, Harris RA, Lernmark A, Hampe CS (2008) Antigen presentation of detergent-free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein. J Immunol Methods 334(1–2):114–121

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stene LC, Oikarinen S, Hyoty H et al (2010) Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 59(12):3174–3180

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–244

    PubMed Central  PubMed  CAS  Google Scholar 

  • TEDDY Study Group (2008) The Environmental Determinants of Diabetes in the Young (TEDDY) study. Ann N Y Acad Sci 1150:1–13

    PubMed Central  Google Scholar 

  • Thorsby E, Lie BA (2005) HLA associated genetic predisposition to autoimmune diseases: genes involved and possible mechanisms. Transpl Immunol 14(3–4):175–182

    PubMed  CAS  Google Scholar 

  • Todd JA (2010) Etiology of type 1 diabetes. Immunity 32(4):457–467

    PubMed  CAS  Google Scholar 

  • Todd JA, Farrall M (1996) Panning for gold: genome-wide scanning for linkage in type 1 diabetes. Hum Mol Genet 5:1443–1448

    PubMed  CAS  Google Scholar 

  • Todd JA, Bell JI, McDevitt HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329(6140):599–604

    PubMed  CAS  Google Scholar 

  • Todd JA, Bell JI, McDevitt HO (1988) A molecular basis for genetic susceptibility to insulin-dependent diabetes mellitus. Trends Genet 4(5):129–134

    PubMed  CAS  Google Scholar 

  • Torn C, Shtauvere-Brameus A, Sanjeevi CB, Landin-Olsson M (2002) Increased autoantibodies to SOX13 in Swedish patients with type 1 diabetes. Ann N Y Acad Sci 958:218–223

    PubMed  CAS  Google Scholar 

  • Torn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ (2008) Diabetes antibody standardization program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51(5):846–852

    PubMed  CAS  Google Scholar 

  • Tree TI, O’Byrne D, Tremble JM et al (2000) Evidence for recognition of novel islet T cell antigens by granule-specific T cell lines from new onset type 1 diabetic patients. Clin Exp Immunol 121(1):100–105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tree TI, Roep BO, Peakman M (2006) A mini meta-analysis of studies on CD4 + CD25+ T cells in human type 1 diabetes: report of the Immunology of Diabetes Society T Cell Workshop. Ann N Y Acad Sci 1079:9–18

    PubMed  Google Scholar 

  • Uibo R, Lernmark A (2008) GAD65 autoimmunity-clinical studies. Adv Immunol 100:39–78

    PubMed  CAS  Google Scholar 

  • Ungar B, Stocks AE, Martin FI, Whittingham S, Mackay IR (1968) Intrinsic-factor antibody, parietal-cell antibody, and latent pernicious anaemia in diabetes mellitus. Lancet 2(7565):415–417

    PubMed  CAS  Google Scholar 

  • Unger WW, Pinkse GG, Van der Kracht SM et al (2007) Human clonal CD8 autoreactivity to an IGRP islet epitope shared between mice and men. Ann N Y Acad Sci 1103:192–195

    PubMed  CAS  Google Scholar 

  • Uno S, Imagawa A, Okita K et al (2007) Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia 50(3):596–601

    PubMed  CAS  Google Scholar 

  • van Endert P, Hassainya Y, Lindo V et al (2006) HLA class I epitope discovery in type 1 diabetes. Ann N Y Acad Sci 1079:190–197

    PubMed  Google Scholar 

  • Vang T, Miletic AV, Bottini N, Mustelin T (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40(6):453–461

    PubMed  CAS  Google Scholar 

  • Vaziri-Sani F, Oak S, Radtke J et al (2010) ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity 43(8):598–606

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vehik K, Beam CA, Mahon JL et al (2011) Development of autoantibodies in the TrialNet Natural History Study. Diabetes Care 34(9):1897–1901

    PubMed Central  PubMed  Google Scholar 

  • Velthuis JH, Unger WW, Abreu JR et al (2010) Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59(7):1721–1730

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vidard L, Rock KL, Benacerraf B (1992) Heterogeneity in antigen processing by different types of antigen-presenting cells. Effect of cell culture on antigen processing ability. J Immunol 149(6):1905–1911

    PubMed  CAS  Google Scholar 

  • Viglietta V, Kent SC, Orban T, Hafler DA (2002) GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 109(7):895–903

    PubMed Central  PubMed  CAS  Google Scholar 

  • Virtanen SM, Nevalainen J, Kronberg-Kippila C et al (2012) Food consumption and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr 95(2):471–478

    PubMed  CAS  Google Scholar 

  • Von Meyenburg H (1940) Über “insulitis” bei diabetes. Schweitz Med Wochenschr 21:554–561

    Google Scholar 

  • Walter M, Albert E, Conrad M et al (2003) IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of type 1 diabetes and associated autoimmunity. Diabetologia 46(5):712–720

    PubMed  CAS  Google Scholar 

  • Wang X, Zhang A, Liu Y et al (2012) Anti-idiotypic antibody specific to GAD65 autoantibody prevents type 1 diabetes in the NOD mouse. PLoS One 7(2):e32515

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wardemann H, Nussenzweig MC (2007) B-cell self-tolerance in humans. Adv Immunol 95:83–110

    PubMed  CAS  Google Scholar 

  • Wasmeier C, Hutton JC (1996) Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem 271(30):18161–18170

    PubMed  CAS  Google Scholar 

  • Weenink SM, Lo J, Stephenson CR et al (2009) Autoantibodies and associated T-cell responses to determinants within the 831–860 region of the autoantigen IA-2 in Type 1 diabetes. J Autoimmun 33(2):147–154

    PubMed  CAS  Google Scholar 

  • Weichselbaum A (1910) Über die veranderungen des pankreas bei diabetes mellitus. Sitzungsber Akad Wiss Wien Math Naturw Klasse 119:73–281

    Google Scholar 

  • Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104(43):17040–17045

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wenzlau JM, Liu Y, Yu L et al (2008) A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 57(10):2693–2697

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wicker LS, Chen SL, Nepom GT et al (1996) Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401. J Clin Invest 98(11):2597–2603

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang J, Danke N, Roti M et al (2008) CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J Autoimmun 31(1):30–41

    PubMed  Google Scholar 

  • Yoon JW, Ihm SH, Kim KW (1989) Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes Res Clin Pract 7(Suppl 1):S47–S58

    PubMed  Google Scholar 

  • Yu L, Miao D, Scrimgeour L, Johnson K, Rewers M, Eisenbarth GS (2012) Distinguishing persistent insulin autoantibodies with differential risk: nonradioactive bivalent proinsulin/insulin autoantibody assay. Diabetes 61(1):179–186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang B, Lan MS, Notkins AL (1997) Autoantibodies to IA-2 in IDDM: location of major antigenic determinants. Diabetes 46(1):40–43

    PubMed  Google Scholar 

  • Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA (2009) Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol 21(3):281–285

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32(4):468–478

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The research in the authors laboratory has been supported by the National Institutes of Health (grant DK63861), Juvenile Diabetes research foundation, the Swedish Research Council, Diabetesfonden, Childhood Diabetes Fund, and Skåne County Council for Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åke Lernmark .

Editor information

Editors and Affiliations

Abbreviations

APC

Antigen-presenting cells

BB

Biobreeding

BCR

B-cell receptor

CTLA-4

Cytolytic T-lymphocyte-associated antigen

cTreg

Conventional regulatory T

DC

Dendritic cells

Fas-L

Fas-Ligand

FOXP3

Forkhead–winged helix

GABA

Gamma-aminobutyric acid

GAD

Glutamic acid decarboxylase

HLA

Human leukocyte antigens

HSP

Heat-shock protein

IA-2

Insulinoma-associated antigen-2

IAA

Insulin autoantibodies

ICA

Islet cell antibodies

ICAM

Intercellular adhesion molecule

ICSA

Islet cell surface antibodies

IDO

Indoleamine 2 3-dioxygenase

IFN

Interferon

IL

Interleukin

iVEC

Islet vascular endothelial cells

LFA-1

Leukocyte function-associated antigen-1

NF

Nuclear factor

NK

Natural killer lymphocyte

NKT

Natural killer T

NO

Nitric oxide

NOD

Nonobese diabetic

nTreg

Natural regulatory T

PBMC

Peripheral blood mononuclear cells

PD-1

Programmed death-1

pDC

Plasmacytoid dendritic cell

pLN

Pancreatic lymph node

pMHC

Peptide–MHC

PRR

Pattern recognition receptors

TCR

T-cell receptor

TEDDY study

The Environmental Determinants of Diabetes in the Young

TF

Transcription factor

TGF

Transforming growth factor

TLR

Toll-like receptor

TNF

Tumor necrosis factor

Treg

Regulatory T-cell

TSA

Tissue-specific antigen

VNTR

Variable nucleotide tandem repeat

ZnT8t

Zinc transporter isoform-8

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lernmark, Å., LaTorre, D. (2014). Immunology of β-Cell Destruction. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_18-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_18-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics