Skip to main content

Mechanisms of Pancreatic β-Cell Apoptosis in Diabetes and Its Therapies

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

Diabetes occurs when β-cells no longer function properly or have been mostly destroyed. Pancreatic β-cell loss by apoptosis and other modes of death contributes to both autoimmune type 1 diabetes and type 2 diabetes. Programmed pancreatic β-cell death can be induced by multiple stresses in both major types of diabetes. There are also several rare forms of diabetes, including Wolcott-Rallison syndrome, Wolfram syndrome, as well as some forms of maturity onset diabetes of the young that are caused by mutations in genes that may play important roles in β-cell survival. The use of islet transplantation as a treatment for diabetes is also limited by excessive β-cell death. Mechanistic insights into the control of multiple modes of β-cell death are therefore important for the prevention and treatment of diabetes. Indeed, a substantial quantity of research has been dedicated to this area over the past decade. In this chapter, we will review the factors that influence the propensity of β-cells to die and the mechanisms of programmed cell death involved in the initiation and progression of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GLP-1:

Glucagon-like peptide 1

MODY:

Maturity onset diabetes of the young

NOD:

Nonobese diabetic

UPR:

Unfolded protein response

VNTR:

Variable number of tandem repeats

References

  • Alejandro EU, Johnson JD (2008) Inhibition of raf-1 alters multiple downstream pathways to induce pancreatic beta-cell apoptosis. J Biol Chem 283(4):2407–2417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barratt BJ et al (2004) Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 53(7):1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Beith JL, Alejandro EU, Johnson JD (2008) Insulin stimulates primary beta-cell proliferation via Raf-1 kinase. Endocrinology 149(5):2251–2260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bell GI, Polonsky KS (2001) Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 414(6865):788–791

    Article  PubMed  CAS  Google Scholar 

  • Bennett ST, Todd JA (1996) Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 30:343–370

    Article  PubMed  CAS  Google Scholar 

  • Boslem E et al (2011) A lipidomic screen of palmitate-treated MIN6 beta-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 435(1):267–276

    Article  PubMed  CAS  Google Scholar 

  • Boslem E, Meikle PJ, Biden TJ (2012) Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets 4(3):177–187

    Article  PubMed Central  PubMed  Google Scholar 

  • Boslem E et al (2013) Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem 288(37):26569–26582

    Article  PubMed  CAS  Google Scholar 

  • Butler AE et al (2003a) Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304–2314

    Article  PubMed  CAS  Google Scholar 

  • Butler AE et al (2003b) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  PubMed  CAS  Google Scholar 

  • Cardozo AK et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54(2):452–461

    Article  PubMed  CAS  Google Scholar 

  • Chen J et al (2008) Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57(4):938–944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chu KY et al (2010) ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J Biol Chem 285(42):32606–32615

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chu KY et al (2011) Differential regulation and localization of carboxypeptidase D and carboxypeptidase E in human and mouse beta-cells. Islets 3(4):155–165

    Article  PubMed  Google Scholar 

  • Chu KY et al (2012) Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia 55(1):128–140

    Article  PubMed  CAS  Google Scholar 

  • Clee SM et al (2006) Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 38(6):688–693

    Article  PubMed  CAS  Google Scholar 

  • Cnop M et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107

    Article  PubMed  CAS  Google Scholar 

  • Colli ML et al (2010) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet 19(1):135–146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Danial NN et al (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14(2):144–153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • David KK et al (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    Article  CAS  Google Scholar 

  • Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3):581–589

    Article  PubMed  CAS  Google Scholar 

  • Dror V et al (2007) Notch signalling suppresses apoptosis in adult human and mouse pancreatic islet cells. Diabetologia 50(12):2504–2515

    Article  PubMed  CAS  Google Scholar 

  • Dror V et al (2008a) Glucose and Endoplasmic Reticulum Calcium Channels Regulate HIF-1{beta} via Presenilin in Pancreatic {beta}-Cells. J Biol Chem 283(15):9909–9916

    Article  PubMed  CAS  Google Scholar 

  • Dror V et al (2008b) Glucose and endoplasmic reticulum calcium channels regulate HIF-1beta via presenilin in pancreatic beta-cells. J Biol Chem 283(15):9909–9916

    Article  PubMed  CAS  Google Scholar 

  • Ebato C et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8(4):325–332

    Article  PubMed  Google Scholar 

  • Efanova IB et al (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 273(50):33501–33507

    Article  PubMed  CAS  Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57(10):1835–1840

    PubMed  CAS  Google Scholar 

  • Ehses JA et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56(9):2356–2370

    Article  PubMed  CAS  Google Scholar 

  • Eizirik DL, Grieco FA (2012) On the immense variety and complexity of circumstances conditioning pancreatic beta-cell apoptosis in type 1 diabetes. Diabetes 61(7):1661–1663

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61

    Article  PubMed  CAS  Google Scholar 

  • Eizirik DL et al (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8(3):e1002552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eizirik DL, Miani M, Cardozo AK (2013) Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 56(2):234–241

    Article  PubMed  CAS  Google Scholar 

  • El-Assaad W et al (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144(9):4154–4163

    Article  PubMed  CAS  Google Scholar 

  • Estella E et al (2006) Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 55(8):2212–2219

    Article  PubMed  CAS  Google Scholar 

  • Federici M et al (2001) High glucose causes apoptosis in cultured human pancreatic Islets of Langerhans – a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50(6):1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fleming A et al (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K et al (2010) Loss of Nix in Pdx1-deficient mice prevents apoptotic and necrotic beta cell death and diabetes. J Clin Invest 120(11):4031–4039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galluzzi L et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16(8):1093–1107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia-Ocana A et al (2001) Using beta-cell growth factors to enhance human pancreatic Islet transplantation. J Clin Endocrinol Metab 86(3):984–988

    PubMed  CAS  Google Scholar 

  • Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Guillen C et al (2008) Biphasic effect of insulin on beta cell apoptosis depending on glucose deprivation. FEBS Lett 582(28):3855–3860

    Article  PubMed  CAS  Google Scholar 

  • Gunton JE et al (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122(3):337–349

    Article  PubMed  CAS  Google Scholar 

  • Gwiazda KS et al (2009) Effects of palmitate on er and cytosolic CA2+ homeostasis in {beta}-cells. Am J Physiol Endocrinol Metab 296(4):E690–E701

    Article  PubMed  CAS  Google Scholar 

  • Haataja L et al (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461

    Article  PubMed  CAS  Google Scholar 

  • Hennige AM et al (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112(10):1521–1532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horikawa Y et al (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26(2):163–175

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey KD et al (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci U S A 105(24):8452–8457

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson JD (2007) Pancreatic beta-cell apoptosis in maturity onset diabetes of the young. Can J Diabetes 31(1):001–008

    Google Scholar 

  • Johnson JD, Alejandro EU (2008) Control of pancreatic beta-cell fate by insulin signaling: the sweet spot hypothesis. Cell Cycle 7(10):1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD et al (2003) Increased islet apoptosis in Pdx1+/− mice. J Clin Invest 111(8):1147–1160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson JD et al (2004) RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J Biol Chem 279(23):24794–24802

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD et al (2006a) Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc Natl Acad Sci U S A 103(51):19575–19580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson JD et al (2006b) Suppressed insulin signaling and increased apoptosis in CD38-null islets. Diabetes 55(10):2737–2746

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, et al. (2009) Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transpl 18(8):833–845

    Article  Google Scholar 

  • Jung HS et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8(4):318–324

    Article  PubMed  CAS  Google Scholar 

  • Kaneto H et al (2005) Oxidative stress and pancreatic beta-cell dysfunction. Am J Ther 12(6):529–533

    Article  PubMed  Google Scholar 

  • Kang R et al (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304(3):463–470

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kulkarni RN et al (1999a) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96(3):329–339

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN et al (1999b) Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest 104(12):R69–R75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laybutt DR et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50(4):752–763

    Article  PubMed  CAS  Google Scholar 

  • Lee B et al (1999) Glucose regulates expression of inositol 1,4,5-trisphosphate receptor isoforms in isolated rat pancreatic islets. Endocrinology 140(5):2173–2182

    PubMed  CAS  Google Scholar 

  • Leist M et al (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185(8):1481–1486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leonardi O, Mints G, Hussain MA (2003) Beta-cell apoptosis in the pathogenesis of human type 2 diabetes mellitus. Eur J Endocrinol 149(2):99–102

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y et al (2005) beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54(2):482–491

    Article  PubMed  CAS  Google Scholar 

  • Liadis N et al (2005) Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol 25(9):3620–3629

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liadis N et al (2007) Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models. Diabetes 56(9):2302–2311

    Article  PubMed  CAS  Google Scholar 

  • Lim GE, Piske M, Johnson JD (2013) 14-3-3 proteins are essential signalling hubs for beta cell survival. Diabetologia 56(4):825–837

    Article  PubMed  CAS  Google Scholar 

  • Lin CY et al (2005) Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3′-kinase-dependent pathway. J Clin Endocrinol Metab 90(12):6678–6686

    Article  PubMed  CAS  Google Scholar 

  • Lovell JF et al (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135(6):1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Lu H et al (2008) The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics 7(8):1434–1451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luciani DS et al (2013) Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic beta-cells. Diabetes 62(1):170–182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lupi R et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51(5):1437–1442

    Article  PubMed  CAS  Google Scholar 

  • Lyssenko V, Groop L (2009) Genome-wide association study for type 2 diabetes: clinical applications. Curr Opin Lipidol 20(2):87–91

    Article  PubMed  CAS  Google Scholar 

  • Lyssenko V et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359(21):2220–2232

    Article  PubMed  CAS  Google Scholar 

  • Maedler K, Donath MY (2004) Beta-cells in type 2 diabetes: a loss of function and mass. Horm Res 62(Suppl 3):67–73

    Article  PubMed  CAS  Google Scholar 

  • Maedler K et al (2004) Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K + channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53(7):1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Maedler K et al (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90(1):501–506

    Article  PubMed  CAS  Google Scholar 

  • Marshall C et al (2005) Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells. Mol Endocrinol 19(1):213–224

    Article  PubMed  CAS  Google Scholar 

  • Martinez SC et al (2008) Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57(4):846–859

    Article  PubMed  CAS  Google Scholar 

  • Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414(6865):792–798

    Article  PubMed  CAS  Google Scholar 

  • McKenzie MD et al (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57(5):1284–1292

    Article  PubMed  CAS  Google Scholar 

  • Mehran AE et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16(6):723–737

    Article  PubMed  CAS  Google Scholar 

  • Meier JJ et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57(6):1584–1594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miao G et al (2006) Dynamic production of hypoxia-inducible factor-1alpha in early transplanted islets. Am J Transplant 6(11):2636–2643

    Article  PubMed  CAS  Google Scholar 

  • Moore F et al (2009) PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes 58(6):1283–1291

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nogueira TC et al (2013) GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 9(5):e1003532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohsugi M et al (2005) Reduced expression of the insulin receptor in mouse insulinoma (MIN6) cells reveals multiple roles of insulin signaling in gene expression, proliferation, insulin content, and secretion. J Biol Chem 280(6):4992–5003

    Article  PubMed  CAS  Google Scholar 

  • Okada T et al (2007) Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci U S A 104(21):8977–8982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otani K et al. (2004) Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am J Physiol Endocrinol Metab 286(1):E41–9

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7(4):335–345

    Article  PubMed  CAS  Google Scholar 

  • Ozcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    Article  PubMed  CAS  Google Scholar 

  • Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Pearson GL et al (2014) Lysosomal acid lipase and lipophagy are constitutive negative regulators of glucose-stimulated insulin secretion from pancreatic beta cells. Diabetologia 57(1):129–139

    Article  PubMed  CAS  Google Scholar 

  • Potter KJ et al (2009) Amyloid inhibitors enhance survival of cultured human islets. Biochim Biophys Acta 1790(6):566–574

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116(7):1802–1812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Preston AM et al (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52(11):2369–2373

    Article  PubMed  CAS  Google Scholar 

  • Pugliese A et al (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15(3):293–297

    Article  PubMed  CAS  Google Scholar 

  • Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307(5708):380–384

    Article  PubMed  CAS  Google Scholar 

  • Riggs AC et al (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48(11):2313–2321

    Article  PubMed  CAS  Google Scholar 

  • Robertson RP et al (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53(Suppl 1):S119–S124

    Article  PubMed  CAS  Google Scholar 

  • Santin I et al (2011) PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 60(12):3279–3288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shu L et al (2008) Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57(3):645–653

    Article  PubMed  CAS  Google Scholar 

  • Song B et al (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118(10):3378–3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steer SA et al (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3(2):e17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stoy J et al (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 104(38):15040–15044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szabat M et al (2012) Maintenance of beta-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes 61(6):1365–1371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thomas HE et al (2009) Beta cell apoptosis in diabetes. Apoptosis 14(12):1389–1404

    Article  PubMed  Google Scholar 

  • Trudeau JD et al (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Ueki K et al (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38(5):583–588

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  PubMed  CAS  Google Scholar 

  • Wang M et al (2013) Is dynamic autocrine insulin signaling possible? A mathematical model predicts picomolar concentrations of extracellular monomeric insulin within human pancreatic islets. PLoS ONE 8(6):e64860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wobser H et al (2002a) Dominant-negative suppression of HNF-1 alpha results in mitochondrial dysfunction, INS-1 cell apoptosis, and increased sensitivity to ceramide-, but not to high glucose-induced cell death. J Biol Chem 277(8):6413–6421

    Article  PubMed  CAS  Google Scholar 

  • Wobser H et al (2002b) Dominant-negative suppression of HNF-1 alpha results in mitochondrial dysfunction, INS-1 cell apoptosis, and increased sensitivity to ceramide-, but not to high glucose-induced cell death. J Biol Chem 277(8):6413–6421

    Article  PubMed  CAS  Google Scholar 

  • Yamada K et al (1999) Essential role of caspase-3 in apoptosis of mouse beta-cells transfected with human Fas. Diabetes 48(3):478–483

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Johnson JD (2013) Multi-parameter, single-cell, kinetic analysis reveals multiple modes of cell death in primary pancreatic beta-cells. J Cell Sci 126(Pt 18):4286–95

    Article  PubMed  CAS  Google Scholar 

  • Yang YH et al (2011) Paracrine signalling loops in adult human and mouse pancreatic islets: netrins modulate beta cell apoptosis signalling via dependence receptors. Diabetologia 54(4):828–842

    Article  PubMed  CAS  Google Scholar 

  • Yang YH et al (2013) Intraislet SLIT-ROBO signaling is required for beta-cell survival and potentiates insulin secretion. Proc Natl Acad Sci U S A 110(41):16480–16485

    Article  PubMed Central  PubMed  Google Scholar 

  • Zehetner J et al (2008) PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Genes Dev 22(22):3135–3146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Johnson, J.D., Yang, Y.C., Luciani, D.S. (2014). Mechanisms of Pancreatic β-Cell Apoptosis in Diabetes and Its Therapies. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_14-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_14-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics