Skip to main content

Exocytosis in Islet β-Cells

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

The development of technologies that allow for live optical imaging of exocytosis from β-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from β-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca2+ and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in β-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from β-cells in the islets of Langerhans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aizawa T, Sato Y, Ishihara F, Taguchi N, Komatsu M, Suzuki N, Hashizume K, Yamada T (1994) ATP-sensitive K+ channel-independent glucose action in rat pancreatic β-cell. Am J Physiol 266:C622–C627

    CAS  PubMed  Google Scholar 

  • Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512

    CAS  PubMed  Google Scholar 

  • Allersma MW, Wang L, Axelrod D, Holz RW (2004) Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Mol Biol Cell 15:4658–4668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez de Toledo G, Fernandez JM (1990) Compound versus multigranular exocytosis in peritoneal mast cells. J Gen Physiol 95:397–409

    CAS  PubMed  Google Scholar 

  • Alvarez de Toledo G, Fernadez-Chacon R, Fernandez JM (1993) Release of secretory products during transient vesicle fusion. Nature 363:554–558

    CAS  PubMed  Google Scholar 

  • Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    CAS  PubMed  Google Scholar 

  • Bernard-Kargar C, Kassis N, Berthault MF, Pralong W, Ktorza A (2001) Sialylated form of the neural cell adhesion molecule (NCAM): a new tool for the identification and sorting of beta-cell subpopulations with different functional activity. Diabetes 50(Suppl 1):S125–S130

    CAS  PubMed  Google Scholar 

  • Bonner-Weir S (1988) Morphological evidence for pancreatic polarity of β-cell within islets of Langerhans. Diabetes 37:616–621

    CAS  PubMed  Google Scholar 

  • Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J (2002) Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 4:955–962

    CAS  PubMed  Google Scholar 

  • Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder RP (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 123:191–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328:814–817

    CAS  PubMed  Google Scholar 

  • Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33:287–294

    CAS  PubMed  Google Scholar 

  • Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′, 5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179:569–571

    CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382

    CAS  PubMed  Google Scholar 

  • Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R (2004) The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 18:117–126

    CAS  PubMed  Google Scholar 

  • Chheda MG, Ashery U, Thakur P, Rettig J, Sheng ZH (2001) Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3:331–338

    CAS  PubMed  Google Scholar 

  • Coorssen JR, Schmitt H, Almers W (1996) Ca2+ triggered massive exocytosis in Chinese hamster ovary cells. EMBO J 15:3787–3791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dan Y, Poo M (1992) Quantal transmitter secretion from myocytes loaded with acetylcholine. Nature 359:733–736

    CAS  PubMed  Google Scholar 

  • Dean PM (1973) Ultrastructural morphometry of the pancreatic beta-cell. Diabetologia 9:115–119

    CAS  PubMed  Google Scholar 

  • Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194

    CAS  PubMed  Google Scholar 

  • Dudek RW, Boyne AF (1986) An excursion through the ultrastructural world of quick-frozen pancreatic islets. Am J Anat 175:217–243, 354

    CAS  PubMed  Google Scholar 

  • Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37

    CAS  PubMed  Google Scholar 

  • Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enserink JM, Christensen AE, De RJ, Van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906

    CAS  PubMed  Google Scholar 

  • Esni F, Taljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144:325–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, Wada J, Zhang Y, Marselli L, Nammo T, Yoneda K, Onishi M, Higashiyama S, Matsuzawa Y, Gonzalez FJ, Weir GC, Kasai H, Shimomura I, Miyagawa J, Wollheim CB, Yamagata K (2005) The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab 2:373–384

    CAS  PubMed  Google Scholar 

  • Gammelsaeter R, Froyland M, Aragon C, Danbolt NC, Fortin D, Storm-Mathisen J, Davanger S, Gundersen V (2004) Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. J Cell Sci 117:3749–3758

    CAS  PubMed  Google Scholar 

  • Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH (2007) Foxa2 controls vesicle docking and insulin secretion in mature beta cells. Cell Metab 6:267–279

    CAS  PubMed  Google Scholar 

  • Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–E1286

    CAS  PubMed  Google Scholar 

  • Gembal M, Gilon P, Henquin J (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerber SH, Sudhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl 1):S3–S11

    CAS  PubMed  Google Scholar 

  • Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T (2005) Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 171:99–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grise F, Taib N, Monterrat C, Lagree V, Lang J (2007) Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine beta-cells. Biochem J 403:483–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Sudhof TC, Han W (2009) Synaptotagmin-7 is a principal Ca2+-sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol 587:1169–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hafez I, Stolpe A, Lindau M (2003) Compound exocytosis and cumulative fusion in eosinophils. J Biol Chem 278:44921–44928

    CAS  PubMed  Google Scholar 

  • Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E (1998) Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J 74:2100–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292

    CAS  PubMed  Google Scholar 

  • Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1–43 photoconversion. Proc Natl Acad Sci USA 98:12748–12753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris TE, Persaud SJ, Jones PM (1997) Pseudosubstrate inhibition of cyclic AMP-dependent protein kinase in intact pancreatic islets: effects on cyclic AMP-dependent and glucose-dependent insulin secretion. Biochem Biophys Res Com 232:648–651

    CAS  PubMed  Google Scholar 

  • Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N (2006) Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 570:271–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H (2007) Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells. J Physiol 582:1087–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellman B, Idahl LA, Lernmark A, Taljedal IB (1974) The pancreatic beta-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci USA 71:3405–3409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    CAS  PubMed  Google Scholar 

  • Henquin JC, Nenquin M, Szollosi A, Kubosaki A, Louis NA (2008) Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. J Endocrinol 196:573–581

    CAS  PubMed  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollins B, Ikeda SR (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J Neurophysiol 78:3069–3076

    CAS  PubMed  Google Scholar 

  • Hutton JC (1989) The insulin secretory granule. Diabetologia 32:271–281

    CAS  PubMed  Google Scholar 

  • Hutton JC, Peshavaria M, Tooke NE (1983) 5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma. Biochem J 210:803–810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318:1299–1302

    CAS  PubMed  Google Scholar 

  • In’t VP, Pipeleers DG, Gepts W (1984) Evidence against the presence of tight junctions in normal endocrine pancreas. Diabetes 33:101–104

    Google Scholar 

  • Islam MS (2002) The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes 51:1299–1309

    CAS  PubMed  Google Scholar 

  • Ito K, Miyashita Y, Kasai H (1997) Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 16:242–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itzen A, Rak A, Goody RS (2007) Sec2 is a highly efficient exchange factor for the Rab protein Sec4. J Mol Biol 365:1359–1367

    CAS  PubMed  Google Scholar 

  • Ivarsson R, Jing X, Waselle L, Regazzi R, Renstrom E (2005) Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6:1027–1035

    CAS  PubMed  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    CAS  PubMed  Google Scholar 

  • Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29:6058–6065

    CAS  PubMed  Google Scholar 

  • Kahn CR (2004) Joslin’s diabetes mellitus. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566:173–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karanauskaite J, Hoppa MB, Braun M, Galvanovskis J, Rorsman P (2009) Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458:389–401

    CAS  PubMed  Google Scholar 

  • Kasai H (1999) Comparative biology of exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93

    CAS  PubMed  Google Scholar 

  • Kasai H, Takagi H, Ninomiya Y, Kishimoto T, Ito K, Yoshida A, Yoshioka T, Miyashita Y (1996) Two components of exocytosis and endocytosis in PC12 cells studied using caged-Ca2+ compounds. J Physiol (Lond) 494:53–65

    CAS  Google Scholar 

  • Kasai H, Suzuki T, Liu T, Kishimoto T, Takahashi T (2001) Fast and cAMP-sensitive mode of Ca2+-dependent insulin exocytosis in pancreatic β-cells. Diabetes 51:S19–S24

    Google Scholar 

  • Kasai H, Hatakeyama H, Kishimoto T, Liu T-T, Nemoto T, Takahashi N (2005a) A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J Physiol 568:891–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, Kasai H, Nagamatsu S, Gomi H, Izumi T (2005b) Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 115:388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N (2006) Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 58:850–877

    CAS  PubMed  Google Scholar 

  • Kasai K, Fujita T, Gomi H, Izumi T (2008) Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 9:1191–1203

    CAS  PubMed  Google Scholar 

  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053

    CAS  PubMed  Google Scholar 

  • Kirillova J, Thomas P, Almers W (1993) Two independently regulated secretory pathways in mast cells. J Physiol Paris 87:203–208

    CAS  PubMed  Google Scholar 

  • Kishimoto T, Liu TT, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 568:905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kishimoto T, Kimura R, Liu T-T, Nemoto T, Takahashi N, Kasai H (2006) Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J 25:673–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klenchin VA, Martin TF (2000) Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82:399–407

    CAS  PubMed  Google Scholar 

  • Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89–92

    CAS  PubMed  Google Scholar 

  • Knoch KP, Meisterfeld R, Kersting S, Bergert H, Altkruger A, Wegbrod C, Jager M, Saeger HD, Solimena M (2006) CAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in beta cells. Cell Metab 3:123–134

    CAS  PubMed  Google Scholar 

  • Kwan EP, Gaisano HY (2005) Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes 54:2734–2743

    CAS  PubMed  Google Scholar 

  • Kwan EP, Xie L, Sheu L, Ohtsuka T, Gaisano HY (2007) Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells. Diabetes 56:2579–2588

    CAS  PubMed  Google Scholar 

  • Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17

    CAS  PubMed  Google Scholar 

  • Langley OK, Etsee-Ufrecht MC, Grant NJ, Gratzl M (1989) Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 37:781–791

    CAS  PubMed  Google Scholar 

  • Larsson S, Wierup N, Sundler F, Eliasson L, Holm C (2008) Lack of cholesterol mobilization in islets of hormone-sensitive lipase deficient mice impairs insulin secretion. Biochem Biophys Res Commun 376:558–562

    CAS  PubMed  Google Scholar 

  • Lester LB, Langeberg LK, Scott JD (1997) Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA 94:14942–14947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 568:917–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lonart G, Schoch S, Kaeser PS, Larkin CJ, Sudhof TC, Linden DJ (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60

    CAS  PubMed  Google Scholar 

  • Lopez JA, Kwan EP, Xie L, He Y, James DE, Gaisano HY (2008) The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells. J Biol Chem 283:17939–17945

    CAS  PubMed  Google Scholar 

  • Lovis P, Gattesco S, Regazzi R (2008a) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312

    CAS  PubMed  Google Scholar 

  • Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008b) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma L, Bindokas VP, Kuznetsov A, Rhodes C, Hays L, Edwardson JM, Ueda K, Steiner DF, Philipson LH (2004) Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc Natl Acad Sci USA 101:9266–9271

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L (2005) Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat beta-cells. Diabetes 54:736–743

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290

    CAS  PubMed  Google Scholar 

  • Maritzen T, Keating DJ, Neagoe I, Zdebik AA, Jentsch TJ (2008) Role of the vesicular chloride transporter ClC-3 in neuroendocrine tissue. J Neurosci 28:10587–10598

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Miki T, Shibasaki T, Kawaguchi M, Shinozaki H, Nio J, Saraya A, Koseki H, Miyazaki M, Iwanaga T, Seino S (2004) Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc Natl Acad Sci USA 101:8313–8318

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137:1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19:697–731

    CAS  PubMed  Google Scholar 

  • Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, Chow RH (2004) Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J 87:L03–L05

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michael DJ, Ritzel RA, Haataja L, Chow RH (2006) Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 55:600–607

    CAS  PubMed  Google Scholar 

  • Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, Nammo T, Yoneda K, Inoue Y, Sladek FM, Magnuson MA, Kasai H, Miyagawa J, Gonzalez FJ, Shimomura I (2006) Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 281:5246–5257

    CAS  PubMed  Google Scholar 

  • Mochida S (2000) Protein-protein interactions in neurotransmitter release. Neurosci Res 36:175–182

    CAS  PubMed  Google Scholar 

  • Monterrat C, Grise F, Benassy MN, Hemar A, Lang J (2007) The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 127:625–632

    CAS  PubMed  Google Scholar 

  • Nagy G, Reim K, Matti U, Brose N, Binz T, Rettig J, Neher E, Sorensen JB (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAβ-25. Neuron 41:417–429

    CAS  PubMed  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nemoto T, Kimura R, Ito K, Tachikawa A, Miyashita Y, Iino M, Kasai H (2001) Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol 3:253–258

    CAS  PubMed  Google Scholar 

  • Nemoto T, Kojima T, Oshima A, Bito H, Kasai H (2004) Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. J Biol Chem 279:37544–37550

    CAS  PubMed  Google Scholar 

  • Nevins AK, Thurmond DC (2005) A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 280:1944–1952

    CAS  PubMed  Google Scholar 

  • Ninomiya Y, Kishimoto T, Miyashita Y, Kasai H (1996) Ca2+-dependent exocytotic pathways in CHO fibroblasts revealed by capacitance measurement and a caged-Ca2+ compound. J Biol Chem 271:17751–17754

    CAS  PubMed  Google Scholar 

  • Ninomiya Y, Kishimoto T, Yamazawa T, Ikeda H, Miyashita Y, Kasai H (1997) Kinetic diversity in the fusion of exocytotic vesicles. EMBO J 16:929–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberhauser AF, Robinson I, Fernandez JM (1996) Simultaneous capacitance and amperometric measurements of exocytosis: a comparison. Biophys J 71:1131–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    CAS  PubMed  Google Scholar 

  • Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oheim M, Loerke D, Stuhmer W, Chow RH (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98

    CAS  PubMed  Google Scholar 

  • Orci L, Malaisse-Lagae F, Ravazzola M, Amherdt M, Renold AE (1973) Exocytosis-endocytosis coupling in the pancreatic beta cell. Science 181:561–562

    CAS  PubMed  Google Scholar 

  • Oshima A, Kojima T, Dejima K, Hisa I, Kasai H, Nemoto T (2005) Two-photon microscopic analysis of acetylcholine-induced mucus secretion in guinea pig nasal glands. Cell Calcium 37:349–357

    CAS  PubMed  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) CAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    CAS  PubMed  Google Scholar 

  • Persaud SJ, Jones PM, Howell SL (1990) Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Com 173:833–839

    CAS  PubMed  Google Scholar 

  • Pickett JA, Thorn P, Edwardson JM (2005) The plasma membrane Q-SNARE syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J Biol Chem 280:1506–1511

    CAS  PubMed  Google Scholar 

  • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942

    CAS  PubMed  Google Scholar 

  • Plattner H, Artalejo AR, Neher E (1997) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol 139:1709–1717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    CAS  PubMed  Google Scholar 

  • Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic {alpha}- and {beta}-cell mass. Proc Natl Acad Sci USA 106:5813–5818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45

    CAS  PubMed  Google Scholar 

  • Rebois RV, Reynolds EE, Toll L, Howard BD (1980) Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240–1248

    CAS  PubMed  Google Scholar 

  • Reese C, Heise F, Mayer A (2005) Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436:410–414

    CAS  PubMed  Google Scholar 

  • Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502:105–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303:2037–2039

    CAS  PubMed  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    CAS  PubMed  Google Scholar 

  • Scepek S, Lindau M (1993) Focal exocytosis by eosinophils - compound exocytosis and cumulative fusion. EMBO J 12:1811–1817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedej S, Rose T, Rupnik M (2005) CAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 567:799–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104:19333–19338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CB, Betz WJ (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380:531–534

    CAS  PubMed  Google Scholar 

  • Speidel D, Salehi A, Obermueller S, Lundquist I, Brose N, Renstrom E, Rorsman P (2008) CAPS1 and CAPS2 regulate stability and recruitment of insulin granules in mouse pancreatic beta cells. Cell Metab 7:57–67

    CAS  PubMed  Google Scholar 

  • Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393

    CAS  PubMed  Google Scholar 

  • Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478

    CAS  PubMed  Google Scholar 

  • Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    CAS  PubMed  Google Scholar 

  • Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R (2009) Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136:235–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Kadowaki T, Yazaki Y, Miyashita Y, Kasai H (1997) Multiple exocytotic pathways in pancreatic β cells. J Cell Biol 138:55–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Kadowaki T, Yazaki Y, Elis-Davies GCR, Miyashita Y, Kasai H (1999) Post-priming actions of ATP in the Ca2+ dependent exocytosis in pancreatic β-cells. Proc Natl Acad Sci USA 96:760–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H (2002a) Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297:1349–1352

    CAS  PubMed  Google Scholar 

  • Takahashi N, Nemoto T, Kiumra R, Tachikawa A, Miwa A, Okado H, Miyashita Y, Iino M, Kadowaki T, Kasai H (2002b) Two-photon excitation imaging of pancreatic islets with various fluorescent probes. Diabetes 51(Suppl 1):S25–S28

    CAS  PubMed  Google Scholar 

  • Takahashi N, Hatakeyama H, Okado H, Miwa A, Kishimoto T, Kojima T, Abe T, Kasai H (2004) Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J Cell Biol 165:255–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297:58–72

    CAS  PubMed  Google Scholar 

  • Thomas-Reetz AC, De Camilli P (1994) A role for synaptic vesicles in non-neuronal cells: clues from pancreatic β cells and from chromaffin cells. FASEB J 8:209–216

    CAS  PubMed  Google Scholar 

  • Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci USA 101:6774–6779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA (2008) Munc 18–1 and granuphilin collaborate during insulin granule exocytosis. Traffic 9:813–832

    CAS  PubMed  Google Scholar 

  • Toonen RF, Kochubey O, De WH, Gulyas-Kovacs A, Konijnenburg B, Sorensen JB, Klingauf J, Verhage M (2006) Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25:3725–3737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuboi T, Terakawa S, Scalettar BA, Fantus C, Roder J, Jeromin A (2002) Sweeping model of dynamin activity. Visualization of coupling between exocytosis and endocytosis under an evanescent wave microscope with green fluorescent proteins. J Biol Chem 277:15957–15961

    CAS  PubMed  Google Scholar 

  • Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124

    CAS  PubMed  Google Scholar 

  • Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H (1995) Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 95:690–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225–227

    CAS  PubMed  Google Scholar 

  • Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424

    CAS  PubMed  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    CAS  PubMed  Google Scholar 

  • Wang Z, Oh E, Thurmond DC (2007) Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 282:9536–9546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaekura K, Kakei M, Yada T (1996) CAMP-signaling pathway acts in selective synergism with glucose or tolbutamide to increase cytosolic Ca2+ in rat pancreatic β-cells. Diabetes 45:295–301

    CAS  PubMed  Google Scholar 

  • Zhou Z, Misler S (1996) Amperometric detection of quantal secretion from patch-clamped rat pancreatic β-cells. J Biol Chem 270:270–277

    Google Scholar 

  • Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70:1543–1552

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kasai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kasai, H., Hatakeyama, H., Ohno, M., Takahashi, N. (2014). Exocytosis in Islet β-Cells. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_11-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_11-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Exocytosis in Islet β-Cells
    Published:
    17 April 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_11-2

  2. Original

    Exocytosis in Islet β-Cells
    Published:
    14 February 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_11-1