Skip to main content

Microscopic Anatomy of the Human Islet of Langerhans

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

Human islets of Langerhans are complex microorgans responsible for maintaining glucose homeostasis. Islets contain five different endocrine cell types, which react to changes in plasma nutrient levels with the release of a carefully balanced mixture of islet hormones into the portal vein. Each endocrine cell type is characterized by its own typical secretory granule morphology, different peptide hormone content, and specific endocrine, paracrine, and neuronal interactions. During development, a cascade of transcription factors determines the formation of the endocrine pancreas and its constituting islet cell types. Differences in ontogeny between the ventrally derived head section and the dorsally derived head, body, and tail section are responsible for differences in innervation, blood supply, and endocrine composition. Islet cells show a close topographical relationship to the islet vasculature and are supplied with a five- to tenfold higher blood flow than the exocrine compartment. Islet microanatomy is disturbed in patients with type 1 diabetes, with a marked reduction in β-cell content and the presence of inflammatory infiltrates. Histopathological lesions in type 2 diabetes include a limited reduction in β-cell content and deposition of amyloid in the islet interstitial space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahrén B (1999) Regulation of insulin secretion by nerves and neuropeptides. Ann Acad Med Singap 28:99–104

    PubMed  Google Scholar 

  • Arnes L, Hill JT, Gross S et al (2012) Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One 7:e52026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ (2012) Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2:a007658

    PubMed  Google Scholar 

  • Baekkeskov S, Aanstoot HJ, Christgau S et al (1990) Identification of the 64 k autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151–156

    CAS  PubMed  Google Scholar 

  • Ballian N, Brunicardi FC (2007) Islet vasculature as a regulator of endocrine pancreas function. World J Surg 31:705–714

    PubMed  Google Scholar 

  • Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:465–480

    Google Scholar 

  • Baum J, Simmons BE, Unger RH, Madison LL (1962) Localization of glucagon in the A-cells in the pancreatic islet by immunofluorescence. Diabetes 11:371–374

    CAS  PubMed  Google Scholar 

  • Bell GI, Santerre RF, Mullenbach GT (1983) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302:716–718

    CAS  PubMed  Google Scholar 

  • Bencosme SA, Liepa E (1955) Regional differences of the pancreatic islet. Endocrinology 57:588–593

    CAS  PubMed  Google Scholar 

  • Bingley PJ, Bonifacio E, Gale EAM (1993) Can we really predict IDDM? Diabetes 42:213–220

    CAS  PubMed  Google Scholar 

  • Bliss M (1982) The discovery of insulin. University of Chicago Press, Chicago

    Google Scholar 

  • Bloom W (1931) A new type of granular cell in the islets of Langerhans of man. Anat Rec 49:363–371

    Google Scholar 

  • Bloom SR, Polak JM (1987) Somatostatin. Br Med J 295:288–290

    CAS  Google Scholar 

  • Bonner-Weir S (1988) Morphological evidence for pancreatic polarity of beta cell within islets of Langerhans. Diabetes 37:616–621

    CAS  PubMed  Google Scholar 

  • Bottazzo GF, Dean BM, McNally JM et al (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313:353–360

    CAS  PubMed  Google Scholar 

  • Bouwens L, Pipeleers DG (1998) Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 41:629–633

    CAS  PubMed  Google Scholar 

  • Bouwens L, Lu WG, De Krijger R (1997) Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40:398–404

    CAS  PubMed  Google Scholar 

  • Brazeau P, Vale W, Burgus R et al (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    CAS  PubMed  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097

    CAS  PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    CAS  PubMed  Google Scholar 

  • Butler AE, Galasso R, Meier JJ et al (2007) Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 50:2323–2331

    CAS  PubMed  Google Scholar 

  • Cabrera O, Berman DM, Kenyon NS et al (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark A, Grant AM (1983) Quantitative morphology of endocrine cells in human fetal pancreas. Diabetologia 25:31–35

    CAS  PubMed  Google Scholar 

  • Clark A, Saad MF, Nezzer T et al (1990) Islet amyloid polypeptide in diabetic and non-diabetic Pima Indians. Diabetologia 33:285–289

    CAS  PubMed  Google Scholar 

  • Cleaver O, Dor Y (2012) Vascular instruction of pancreas development. Development 139:2833–2843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cnop M, Grupping A, Hoorens A et al (2000) Endocytosis of low-density lipoprotein by human pancreatic beta cells and uptake in lipid-storing vesicles, which increase with age. Am J Pathol 156:237–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cnop M, Hughes SJ, Igoillo-Esteve M et al (2010) The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53:321–330

    CAS  PubMed  Google Scholar 

  • Cnop M, Igoillo-Esteve M, Hughes SJ et al (2011) Longevity of human islet α- and β-cells. Diabetes Obes Metab 13(Suppl 1):39–46

    CAS  PubMed  Google Scholar 

  • Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Koning EJ, van den Brand JJ, Mott VL et al (1998) Macrophages and pancreatic islet amyloidosis. Amyloid 5:247–254

    PubMed  Google Scholar 

  • Dean MP (1973) Ultrastructural morphometry of the pancreatic beta cell. Diabetologia 9:115–119

    CAS  PubMed  Google Scholar 

  • Deconinck JF, Potvliege PR, Gepts W (1971) The ultrastructure of the human pancreatic islets. I. The islets of adults. Diabetologia 7:266–282

    CAS  PubMed  Google Scholar 

  • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    CAS  PubMed  Google Scholar 

  • Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104:5115–5120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edlund H (2002) Pancreatic organogenesis-developmental mechanisms and implications for therapy. Nat Rev Gen 3:524–532

    CAS  Google Scholar 

  • Ehrie MG, Swartz FJ (1974) Diploid, tetraploid and octaploid beta cells in the islets of Langerhans of the normal human pancreas. Diabetes 23:583–588

    CAS  PubMed  Google Scholar 

  • Eiden LE (1987) Is chromogranin-A a prohormone? Nature 325:301

    CAS  PubMed  Google Scholar 

  • Eliasson L, Abdulkader F, Braun M et al (2008) Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586:3313–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foulis AK, Liddle CN, Farquharson MA et al (1986) The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 33:290–298

    Google Scholar 

  • Gaisano HY (2012) Deploying insulin granule-granule fusion to rescue deficient insulin secretion in diabetes. Diabetologia 55:877–880

    CAS  PubMed  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633

    CAS  PubMed  Google Scholar 

  • Goldstein MB, Davis EA (1968) The three dimensional architecture of the islets of Langerhans. Acta Anat 71:161–171

    CAS  PubMed  Google Scholar 

  • Gomori G (1939) A differential stain for cell types in the pancreatic islets. Am J Pathol 15:497–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimelius L, Strand A (1974) Ultrastructural studies of the argyrophil reaction in alpha1 cells in human pancreatic islets. Virchows Arch A Pathol Anat Histol 364:129–135

    CAS  PubMed  Google Scholar 

  • Grube D, Bohn R (1983) The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells. Arch Histol Jap 46:327–353

    CAS  PubMed  Google Scholar 

  • Hellerström C, Hellman B (1960) Some aspects of silver impregnation of the islets of Langerhans in the rat. Acta Endocrinol (Copenh) 35:518–532

    Google Scholar 

  • Hellman B, Hellerström C (1969) Histology and histophysiology of the islets of Langerhans in man. In: Pfeiffer EF (ed) Handbook of diabetes mellitus. Lehmanns V, Munich, pp 90–118

    Google Scholar 

  • Henderson JR, Moss MC (1985) A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 70:347–356

    CAS  PubMed  Google Scholar 

  • Henquin JC, Rahier J (2011) Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 54:1720–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes SJ, Clark A, McShane P et al (2006) Characterisation of collagen VI within the islet exocrine interface of the human pancreas: implications for clinical islet isolation? Transplantation 81:423–426

    CAS  PubMed  Google Scholar 

  • Hutton JC, Peshavaria M, Johnston CF et al (1988) Immunolocalization of betagranin: a chromogranin A-related protein of the pancreatic B-cell. Endocrinology 122:1014–1020

    CAS  PubMed  Google Scholar 

  • In’t Veld P (2011) Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets 3:131–138

    PubMed Central  PubMed  Google Scholar 

  • In’t Veld P, Lievens D, De Grijse J et al (2007) Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 56:2400–2404

    PubMed  Google Scholar 

  • Johnson KH, O’Brien TD, Hayden DW et al (1988) Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 130:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kassem SA, Ariel I, Thornton PS et al (2000) Beta cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49:1325–1333

    CAS  PubMed  Google Scholar 

  • Keenan HA, Sun JK, Levine J et al (2010) Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes 59:2846–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimmel JR, Pollock HG, Hazelwood RL (1971) A new pancreatic polypeptide. Fed Proc (USA) 30:1318 (abstr)

    Google Scholar 

  • Klimstra DS, Hruban RH, Pitman MR (2007) In: Mills SE (ed) Histology for pathologist, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Korpos E, Kadri N, Kappelhoff R et al (2013) The Peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62:531–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushner JA (2013) The role of aging upon β-cell turnover. J Clin Invest 123:990–995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacy PE (1959) Electron microscopic and fluorescent antibody studies on islets of Langerhans. Exp Cell Res 7:296–308

    Google Scholar 

  • Lammert E, Gu G, McLaughlin M et al (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13:1070–1074

    CAS  PubMed  Google Scholar 

  • Lan MS, Wasserfall C, Maclaren NK, Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 93:6367–6370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lane MA (1907) The cytological characteristics of the areas of Langerhans. Am J Anat 7:409–422

    Google Scholar 

  • Larsson LI, Sundler F, Håkanson R et al (1974) Localization of APP, a postulated new hormone, to a pancreatic endocrine cell type. Histochemistry 42:377–382

    CAS  PubMed  Google Scholar 

  • Like AA, Orci L (1972) Embryogenesis of the human fetal pancreatic islets: a light and electron microscopic study. Diabetes 21:511–534

    CAS  PubMed  Google Scholar 

  • Löhr M, Klöppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762

    PubMed  Google Scholar 

  • Luft R, Efendic S, Hökfelt T et al (1974) Immunohistochemical evidence for the localization of somatostatin–like immunoreactivity in a cell population of the pancreatic islets. Med Biol 52:428–430

    CAS  PubMed  Google Scholar 

  • Maclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–376

    CAS  PubMed  Google Scholar 

  • Maske H (1957) Interaction between insulin and zinc in the islets of Langerhans. Diabetes 6:335–341

    CAS  PubMed  Google Scholar 

  • Meier JJ, Bhushan A, Butler AE et al (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228

    CAS  PubMed  Google Scholar 

  • Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meier JJ, Breuer TGK, Bonadonna RC et al (2012) Pancreatic diabetes manifests when beta cell area declines by approximately 65 % in humans. Diabetologia 55:1346–1354

    CAS  PubMed  Google Scholar 

  • Morchoe CC (1997) Lymphatic system of the pancreas. Microsc Res Tech 37:456–477

    Google Scholar 

  • Murlin JR, Clough HG, Gibbs CB, Stokes AM (1923) Aqueous extracts of pancreas. I. Influence on the carbohydrate metabolism of depancreatized animals. J Biol Chem 56:253

    CAS  Google Scholar 

  • Ogilvie RF (1937) A quantitative estimation of the pancreatic islet tissue. Q J Med 6:287–300

    Google Scholar 

  • Olofsson CS, Göpel SO, Barg S et al (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic beta cells. Pflugers Arch 444:43–51

    CAS  PubMed  Google Scholar 

  • Opie EL (1901) The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of Langerhans. J Exp Med 5:527–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orci L (1986) The insulin cell: its cellular environment and how it processes (pro)insulin. Diabetes Metab Rev 2:71–106

    CAS  PubMed  Google Scholar 

  • Orci L, Malaisse W (1980) Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Diabetes 29:943–944

    CAS  PubMed  Google Scholar 

  • Orci L, Baetens D, Ravazzola M et al (1976) Pancreatic polypeptide and glucagon: non-random distribution in pancreatic islets. Life Sci 19:1811–1815

    CAS  PubMed  Google Scholar 

  • Orci L, Malaisse-Lagae F, Baetens D, Perrelet A (1978) Pancreatic-polypeptide-rich regions in human pancreas. Lancet 2:1200–1201

    CAS  PubMed  Google Scholar 

  • Orci L, Stefan Y, Malaisse-Lagae F, Perrelet A (1979) Instability of pancreatic endocrine cell populations throughout life. Lancet 1:615–616

    CAS  PubMed  Google Scholar 

  • Perl S, Kushner JA, Buchholz BA et al (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95:E234–E239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pictet R, Rutter WJ (1972) Development of the embryonic endocrine pancreas. In: Steiner DF, Freinkel N (eds) Handbook of physiology. Section 7: endocrinology. vol 1: endocrine pancreas. Williams & Wilkins, Baltimore, pp 25–66

    Google Scholar 

  • Pipeleers D, Ling Z (1992) Pancreatic cells in insulin-dependent diabetes. Diabetes Metab Rev 8:209–227

    CAS  PubMed  Google Scholar 

  • Rahier J, Wallon J, Henquin JC (1981) Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 20:540–546

    CAS  PubMed  Google Scholar 

  • Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371

    CAS  PubMed  Google Scholar 

  • Rahier J, Guiot Y, Goebbels RM et al (2008) Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42

    PubMed  Google Scholar 

  • Riedel MJ, Asadi A, Wang R et al (2012) Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55:372–381

    CAS  PubMed  Google Scholar 

  • Rodriguez-Diaz R, Abdulreda MH, Formoso AL et al (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roep BO (2003) The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 46:305–321

    CAS  PubMed  Google Scholar 

  • Saito K, Iwama N, Takahashi T (1978) Morphometrical analysis on topographical difference in size distribution, number and volume of islets in the human pancreas. Tohoku J Exp Med 124:177–186

    CAS  PubMed  Google Scholar 

  • Schuit F, In’t Veld PA, Pipeleers DG (1988) Glucose recruits pancreatic B-cells to proinsulin biosynthesis. Proc Natl Acad Sci U S A 85:3865–3869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sempoux C, Guiot Y, Dubois D et al (2001) Human type 2 diabetes: morphological evidence for abnormal beta-cell function. Diabetes 50(Suppl 1):S172–S177

    CAS  PubMed  Google Scholar 

  • Smith PH (1975) Structural modification of Schwann cells in the pancreatic islets of the dog. Am J Anat 144:513–517

    CAS  PubMed  Google Scholar 

  • Stefan Y, Orci L, Malaisse-Lagae F et al (1982) Quantitation of endocrine cell content in the pancreas of non-diabetic and diabetic humans. Diabetes 31:694–700

    CAS  PubMed  Google Scholar 

  • Stefan Y, Grasso S, Perrelet A, Orci L (1983) A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 32:293–301

    CAS  PubMed  Google Scholar 

  • Tang S-C, Chiu Y-C, Hsu C-T et al (2013) Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia 56:2424 (published online 26 June 2013)

    PubMed  Google Scholar 

  • Tsui H, Winer S, Chan Y et al (2008) Islet glia, neurons, and beta cells. Ann NY Acad Sci 1150:32–42

    CAS  PubMed  Google Scholar 

  • Vaillant CR, Lund PK (1986) Distribution of glucagon-like peptide I in canine and feline pancreas and gastrointestinal tract. J Histochem Cytochem 34:1117–1121

    CAS  PubMed  Google Scholar 

  • Veld PI, De Munck N, Van Belle K et al (2010) Beta cell replication is increased in donor organs from young patients after prolonged life support. Diabetes 59:1702–1708

    CAS  PubMed Central  Google Scholar 

  • Virtanen I, Banerjee M, Palgi J et al (2008) Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 51:1181–1191

    CAS  PubMed  Google Scholar 

  • Volk BW, Wellman KF (1985) Historical review. In: Volk BW, Arquilla ER (eds) The diabetic pancreas. Plenum, New York, pp 1–16

    Google Scholar 

  • Wang X, Zielinski MC, Misawa R et al (2013) Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PloS One 8:e55501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe T, Yaegashi H, Koizumi M et al (1999) Changing distribution of islets in the developing human pancreas: a computer-assisted three-dimensional reconstruction study. Pancreas 18:349–354

    CAS  PubMed  Google Scholar 

  • Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westermark P (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Patol Anat 359:1–18

    CAS  Google Scholar 

  • Westermark P, Wilander E, Westermark GT, Johnson KH (1987) Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals. Diabetologia 30:887–892

    CAS  PubMed  Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, Islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    CAS  PubMed  Google Scholar 

  • Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Reg Peptides 107:63–69

    CAS  Google Scholar 

  • Willcox A, Richardson SJ, Bone AJ et al (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willcox A, Richardson SJ, Bone AJ et al (2010) Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia 53:2020–2028

    CAS  PubMed  Google Scholar 

  • Wittingen J, Frey CF (1974) Islet concentration in the head, body, tail and uncinate process of the pancreas. Ann Surg 179:412–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zanone MM, Favaro E, Camussi G (2008) From endothelial to beta cells: insights into pancreatic islet microendothelium. Curr Diabetes Rev 4:1–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PV and SS are supported by a grant from the FWO-Vlaanderen (G019211N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter In’t Veld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

In’t Veld, P., Smeets, S. (2014). Microscopic Anatomy of the Human Islet of Langerhans. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_1-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_1-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics