Skip to main content

Functional Genomics, Proteomics, Metabolomics and Bioinformatics for Systems Biology

  • Chapter
Systems Biology

Abstract

This chapter introduces Systems Biology, its context, aims, concepts and strategies, then describes approaches used in genomics, epigenomics, transcriptomics, proteomics, metabolomics and lipidomics, and how recent technological advances in these fields have moved the bottleneck from data production to data analysis. Methods for clustering, feature selection, prediction analysis, text mining and pathway analysis used to analyse and integrate the data produced are then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BASE:

BioArray Software Environment

BS:

BiSulphite

CATCH-IT:

Covalent Attachment of Tags to Capture Histones and Identify Turnover

CFS:

Correlation-based Feature Selection

CHARM:

Comprehensive High-throughput Array for Relative Methylation

ChIA-PET:

Chromatin Interaction Analysis by Paired-End Tag

ChIP:

Chromatin ImmunoPrecipitation

CLIP:

Crosslinking immunoprecipitation

DHS:

DNAse I hypersensitivity

DNA:

DeoxyriboNucleic Acid

EFS:

Ensemble Feature Selection

ELISA:

Enzyme-Linked ImmunoSorbent Assays

ENCODE:

ENCyclopedia Of DNA Elements

ESI:

ElectroSpray Ionisation

EWAS:

Epigenome-Wide Association Studies

FAB:

Fast Atom Bombardment

FAIRE:

Formaldehyde-assisted isolation of regulatory elements

FDR:

False Discovery Rate

FT-ICR:

Fourier Transform Ion Cyclotron Resonance

FUGE:

Functional Genomics Experiment data model

GAGE:

Generally Applicable Gene-set Enrichment

GC:

Gas Chromatography

GEO:

Gene Expression Omnibus

GO:

Gene Ontology

GSEA:

Gene Set Enrichment Analysis

GWAS:

Genome-Wide Association Studies

HITS-CLIP:

HIgh-Throughput Sequencing of RNAs isolated by CrossLinking ImmunoPrecipitation

HMM:

Hidden Markov Models

HPLC:

High Performance Liquid Chromatography

IMS:

Imaging Mass Spectrometry

IP:

ImmunoPrecipitation

iTRAQ:

Isobaric Tags for Relative and Absolute Quantitation

KEGG:

Kyoto Encyclopedia of Genes and Genomes

kNN:

k-Nearest Neighbor

LC:

Liquid Chromatography

MALDI:

Matrix Assisted Laser Desorption Ionisation

MBD:

Methyl-CpG Binding Domain

MCAM:

Multiple Clustering Analysis Methodology

MeDIP:

Methylated DNA Immunoprecipitation

MGDE:

Microarray Gene Expression Data

MIAME:

Minimum Information About a Microarray Experiment

MIAPE:

Minimum Information About a Proteomics Experiment

MINSEQE:

Minimum INformation about a high-throughput SeQuencing Experiment

MMASS:

Microarray-based Methylation Assessment of Single Samples

MN:

Microccocal Nuclease

MRM:

Multiple Reaction Monitoring

mRNA:

Messenger RiboNucleic Acid

MS:

Mass Spectrometry

NCBI:

National Center for Biotechnology Information

NER:

Named-Entity Recognition

NGS:

Next Generation Sequencing

NIH:

National Institutes of Health

NMR:

Nuclear Magnetic Resonance

PaGE:

Patterns from Gene Expression

PCR:

Polymerase Chain Reaction

PRIDE:

PRoteomics IDEntifications

PSM:

Peptide-Spectrum Match

QMS:

Quadrupole Mass Analyser

RNA:

RiboNucleic Acid

RRBS:

Reduced Representation Bisulphite Sequencing

RT-qPCR:

Reverse Transcription quantitative PCR

SAGE:

Serial Analysis of Gene Expression

SELDI:

Surface Enhanced Laser Desorption Ionization

SILAC:

Stable Isotope Labeling by Amino acids in Cell culture

SNP:

Single Nucleotide Polymorphism

SRM:

Selected Reaction Monitoring

SUMCOV:

SUM of COVariances

SVM:

Support Vector Machine

ToF:

Time-of-Flight

UCSC:

University of California, Santa Cruz

VOCs:

Volatile Organic Compounds

References

  1. Gayon J, Malaterre C, Morange M, Raulin-Cerceau F, Tirard S (2010) Defining life: conference proceedings. Orig Life Evol Biosph 40(2):119–120

    PubMed  Google Scholar 

  2. Westerhoff H, Hofmeyr J-H (2005) What is systems biology? From genes to function and back. In: Alberghina L, Westerhoff HV (eds) systems biology, vol 13. Springer, Berlin, pp 163–185

    Google Scholar 

  3. Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11(23–24):1085–1092

    CAS  PubMed  Google Scholar 

  4. Lowe JA, Jones P, Wilson DM (2010) Network biology as a new approach to drug discovery. Curr Opin Drug Discov Devel 13(5):524–526

    CAS  PubMed  Google Scholar 

  5. Pujol A, Mosca R, Farrés J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31(3):115–123

    CAS  PubMed  Google Scholar 

  6. Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41(1):1–10

    CAS  PubMed  Google Scholar 

  7. Auffray C, Imbeaud S, Roux-Rouquié M, Hood L (2003) From functional genomics to systems biology: concepts and practices. C R Biol 326(10–11):879–892

    CAS  PubMed  Google Scholar 

  8. Van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep 5(11):1016–1020

    PubMed Central  PubMed  Google Scholar 

  9. Boogerd FC (2007) Systems biology: philosophical foundations. Elsevier, London, p 342

    Google Scholar 

  10. Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinf 2(3):258–270

    CAS  Google Scholar 

  11. Auffray C, Nottale L (2008) Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Prog Biophys Mol Biol 97(1):79–114

    PubMed  Google Scholar 

  12. Auffray C, Noble D (2009) Origins of systems biology in William Harvey’s masterpiece on the movement of the heart and the blood in animals. Int J Mol Sci 10(4):1658–1669

    PubMed Central  PubMed  Google Scholar 

  13. Kohl P, Noble D (2009) Systems biology and the virtual physiological human. Mol Syst Biol 5:292

    PubMed Central  PubMed  Google Scholar 

  14. Westerhoff HV, Kolodkin A, Conradie R, Wilkinson SJ, Bruggeman FJ, Krab K, van Schuppen JH, Hardin H, Bakker BM, Moné MJ, Rybakova KN, Eijken M, van Leeuwen HJP, Snoep JL (2009) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58(1–2):7–34

    PubMed  Google Scholar 

  15. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. BioSystems 83(2–3):81–90

    CAS  PubMed  Google Scholar 

  16. del Sol A, Balling R, Hood L, Galas D (2010) Diseases as network perturbations. Curr Opin Biotechnol 21(4):566–571

    PubMed  Google Scholar 

  17. Westerhoff HV (2001) The silicon cell, not dead but live! Metab Eng 3(3):207–210

    CAS  PubMed  Google Scholar 

  18. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33

    CAS  PubMed  Google Scholar 

  19. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 4(3):237–243

    CAS  PubMed  Google Scholar 

  20. Hunter PJ, Crampin EJ, Nielsen PMF (2008) Bioinformatics, multiscale modeling and the IUPS physiome project. Brief Bioinf 9(4):333–343

    CAS  Google Scholar 

  21. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2

    PubMed Central  PubMed  Google Scholar 

  22. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29:613

    CAS  Google Scholar 

  23. Horner DS, Pavesi G, Castrignanò T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinf 11(2):181–197

    CAS  Google Scholar 

  24. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    CAS  PubMed  Google Scholar 

  25. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109

    PubMed Central  PubMed  Google Scholar 

  26. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682

    CAS  PubMed  Google Scholar 

  27. Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, James Kent W (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 40(Database issue):D918–D923

    Google Scholar 

  28. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham L, Durbin R, Fernández-Suarez XM, Harrow J, Herrero J, Hubbard TJP, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SMJ (2012) Ensembl 2012. Nucleic Acids Res 40(Database issue):D84–D90

    Google Scholar 

  29. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    CAS  PubMed  Google Scholar 

  30. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498

    CAS  PubMed Central  PubMed  Google Scholar 

  31. The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Google Scholar 

  32. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, Watanabe K, Yang H, Yuen MMF, Knoppers BM, Bobrow M, Cambon-Thomsen A, Dressler LG, Dyke SOM, Joly Y, Kato K, Kennedy KL, Nicolás P, Parker MJ, Rial-Sebbag E, Romeo-Casabona CM, Shaw KM, Wallace S, Wiesner GL, ···Zeps N, Lichter P, Biankin AV, Chabannon C, Chin L, Clément B, de Alava E, Degos F, Ferguson ML, Geary P, Hayes DN, Hudson TJ, Johns AL, Kasprzyk A, Nakagawa H, Penny R, Piris MA, Sarin R, Scarpa A, Shibata T, van de Vijver M, Futreal PA, Aburatani H, Bayés M, Botwell DDL, Campbell PJ, Estivill X, Gerhard DS, Grimmond SM, Gut I, Hirst M, López-Otín C, Majumder P, Marra M, McPherson JD, Nakagawa H, Ning Z, Puente XS, Ruan Y, Shibata T, Stratton MR, Stunnenberg HG, Swerdlow H, Velculescu VE, Wilson RK, Xue HH, Yang L, Spellman PT, Bader GD, Boutros PC, Campbell PJ, Flicek P, Getz G, Guigó R, Guo G, Haussler D, Heath S, Hubbard TJ, Jiang T, Jones SM, Li Q, López-Bigas N, Luo R, Muthuswamy L, Ouellette BFF, Pearson JV, Puente XS, Quesada V, Raphael BJ, Sander C, Shibata T, Speed TP, Stein LD, Stuart JM, Teague TW, Totoki Y, Tsunoda T, Valencia A, Wheeler DA, Wu H, Zhao S, Zhou G, Stein LD, Guigó R, Hubbard TJ, Joly Y, Jones SM, Kasprzyk A, Lathrop M, López-Bigas N, Ouellette BFF, Spellman PT, Teague JW, Thomas G, Valencia A, Yoshida T, Kennedy KL, Axton M, Dyke SOM, Futreal PA, Gerhard DS, Gunter C, Guyer M, Hudson TJ, McPherson JD, Miller LJ, Ozenberger B, Shaw KM, Kasprzyk A, Stein LD, Zhang J, Haider SA, Wang J, Yung CK, Cros A, Cross A, Liang Y, Gnaneshan S, Guberman J, Hsu J, Bobrow M, Chalmers DRC, Hasel KW, Joly Y, Kaan TSH, Kennedy KL, Knoppers BM, Lowrance WW, Masui T, Nicolás P, Rial-Sebbag E, Rodriguez LL, Vergely C, Yoshida T, Grimmond SM, Biankin AV, Bowtell DDL, Cloonan N, deFazio A, Eshleman JR, Etemadmoghadam D, Gardiner BB, Gardiner BA, Kench JG, Scarpa A, Sutherland RL, Tempero MA, Waddell NJ, Wilson PJ, McPherson JD, Gallinger S, Tsao MS, Shaw PA, Petersen GM, Mukhopadhyay D, Chin L, DePinho RA, Thayer S, Muthuswamy L, Shazand K, Beck T, Sam M, Timms L, Ballin V, Lu Y, Ji J, Zhang X, Chen F, Hu X, Zhou G, Yang Q, Tian G, Zhang L, Xing X, Li X, Zhu Z, Yu Y, Yu J, Yang H, Lathrop M, Tost J, Brennan P, Holcatova I, Zaridze D, Brazma A, Egevard L, Prokhortchouk E, Banks RE, Uhlén M, Cambon-Thomsen A, Viksna J, Ponten F, Skryabin K, Stratton MR, Futreal PA, Birney E, Borg A, Børresen-Dale AL, Caldas C, Foekens JA, Martin S, Reis-Filho JS, Richardson AL, Sotiriou C, Stunnenberg HG, Thoms G, van de Vijver M, van’t Veer L, Calvo F, Birnbaum D, Blanche H, Boucher P, Boyault S, Chabannon C, Gut I, Masson-Jacquemier JD, Lathrop M, Pauporté L, Pivot X, Vincent-Salomon A, Tabone E, Theillet C, Thomas G, Tost J, Treilleux I, Calvo F, Bioulac-Sage P, Clément B, Decaens T, Degos F, Franco D, Gut I, Gut M, Heath S, Lathrop M, Samuel D, Thomas G, Zucman-Rossi J, Lichter P, Eils R, Brors B, Korbel JO, Korshunov A, Landgraf P, Lehrach H, Pfister S, Radlwimmer B, Reifenberger G, Taylor MD, von Kalle C, Majumder PP, Sarin R, Rao TS, Bhan MK, Scarpa A, Pederzoli P, Lawlor RA, Delledonne M, Bardelli A, Biankin AV, Grimmond SM, Gress T, Klimstra D, Zamboni G, Shibata T, Nakamura Y, Nakagawa H, Kusada J, Tsunoda T, Miyano S, Aburatani H, Kato K, Fujimoto A, Yoshida T, Campo E, López-Otín C, Estivill X, Guigó R, de Sanjosé S, Piris MA, Montserrat E, González-Díaz M, Puente XS, Jares P, Valencia A, Himmelbauer H, Himmelbaue H, Quesada V, Bea S, Stratton MR, Futreal PA, Campbell PJ, Vincent-Salomon A, Richardson AL, Reis-Filho JS, van de Vijver M, Thomas G, Masson-Jacquemier JD, Aparicio S, Borg A, Børresen-Dale AL, Caldas C, Foekens JA, Stunnenberg HG, van’t Veer L, Easton DF, Spellman PT, Martin S, Barker AD, Chin L, Collins FS, Compton CC, Ferguson ML, Gerhard DS, Getz G, Gunter C, Guttmacher A, Guyer M, Hayes DN, Lander ES, Ozenberger B, Penny R, Peterson J, Sander C, Shaw KM, Speed TP, Spellman PT, Vockley JG, Wheeler DA, Wilson RK, Hudson TJ, Chin L, Knoppers BM, Lander ES, Lichter P, Stein LD, Stratton MR, Anderson W, Barker AD, Bell C, Bobrow M, Burke W, Collins FS, Compton CC, DePinho RA, Easton DF, Futreal PA, Gerhard DS, Green AR, Guyer M, Hamilton SR, Hubbard TJ, Kallioniemi OP, Kennedy KL, Ley TJ, Liu ET, Lu Y, Majumder P, Marra M, Ozenberger B, Peterson J, Schafer AJ, Spellman PT, Stunnenberg HG, Wainwright BJ, Wilson RK, Yang H (2010) International network of cancer genome projects. Nature 464(7291):993–998

    Google Scholar 

  33. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696

    CAS  PubMed  Google Scholar 

  34. Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation Nat Rev Genet 11(8):533–538

    Google Scholar 

  35. Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inf Exp 2(1):1–12

    Google Scholar 

  36. Virgin HW, Todd JA (2011) Metagenomics and personalized medicine. Cell 147(1):44–56

    CAS  PubMed  Google Scholar 

  37. Desai N, Antonopoulos D, Gilbert JA, Glass EM, Meyer F (2012) From genomics to metagenomics. Curr Opin Biotechnol 23(1):72–76

    CAS  PubMed  Google Scholar 

  38. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11(8):R83

    PubMed Central  PubMed  Google Scholar 

  39. Stein LD (2010) The case for cloud computing in genome informatics. Genome Biol 11(5):207

    PubMed Central  PubMed  Google Scholar 

  40. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson K (2012) Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community. BMC Bioinf 13(1):42

    Google Scholar 

  41. Field D, Sansone S-A, Collis A, Booth T, Dukes P, Gregurick SK, Kennedy K, Kolar P, Kolker E, Maxon M, Millard S, Mugabushaka A-M, Perrin N, Remacle JE, Remington K, Rocca-Serra P, Taylor CF, Thorley M, Tiwari B, Wilbanks J (2009) Megascience omics data sharing. Science 326(5950):234–236

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman LM, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 39(Database issue):D38–D51

    Google Scholar 

  43. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Dunn WB (2011) Mass spectrometry in systems biology an introduction. Meth Enzymol 500:15–35

    CAS  PubMed  Google Scholar 

  45. Hagen JB (2000) The origins of bioinformatics. Nat Rev Genet 1(3):231–236

    CAS  PubMed  Google Scholar 

  46. Mount DR (2004) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, Second

    Google Scholar 

  47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11(8):425–1433

    Google Scholar 

  49. Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, Fragoso G, Game L, Heiskanen M, Morrison N, Rocca-Serra P, Sansone S-A, Taylor C, White J, Stoeckert CJ Jr (2006) The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873

    CAS  PubMed  Google Scholar 

  50. Csordas A, Ovelleiro D, Wang R, Foster JM, Ríos D, Vizcaíno JA, Hermjakob H (2012) PRIDE: quality control in a proteomics data repository. Database (Oxford) 2012:bas004

    Google Scholar 

  51. Jones AR, Miller M, Aebersold R, Apweiler R, Ball CA, Brazma A, Degreef J, Hardy N, Hermjakob H, Hubbard SJ, Hussey P, Igra M, Jenkins H, Julian RK Jr, Laursen K, Oliver SG, Paton NW, Sansone S-A, Sarkans U, Stoeckert CJ Jr, Taylor CF, Whetzel PL, White JA, Spellman P, Pizarro A (2007) The functional genomics experiment model (FuGE): an extensible framework for standards in functional genomics. Nat Biotechnol 25(10):1127–1133

    CAS  PubMed  Google Scholar 

  52. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    CAS  PubMed  Google Scholar 

  53. Novere NL, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villeger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotech 27(8):735–741

    Google Scholar 

  54. Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Chelala C, Croft D, Cros A, Cutts RJ, Di Genova A, Forbes S, Fujisawa T, Gadaleta E, Goodstein DM, Gundem G, Haggarty B, Haider S, Hall M, Harris T, Haw R, Hu S, Hubbard S, Hsu J, Iyer V, Jones P, Katayama T, Kinsella R, Kong L, Lawson D, Liang Y, Lopez-Bigas N, Luo J, Lush M, Mason J, Moreews F, Ndegwa N, Oakley D, Perez-Llamas C, Primig M, Rivkin E, Rosanoff S, Shepherd R, Simon R, Skarnes B, Smedley D, Sperling L, Spooner W, Stevenson P, Stone K, Teague J, Wang J, Wang J, Whitty B, Wong DT, Wong-Erasmus M, Yao L, Youens-Clark K, Yung C, Zhang J, Kasprzyk A (2011) BioMart central portal: an open database network for the biological community. Database 2011:bar041

    Google Scholar 

  55. Zhang J, Haider S, Baran J, Cros A, Guberman JM, Hsu J, Liang Y, Yao L, Kasprzyk A (2011) BioMart: a data federation framework for large collaborative projects. Database (Oxford) 2011:bar038

    Google Scholar 

  56. Perakslis ED, Van Dam J, Szalma S (2010) How informatics can potentiate precompetitive open-source collaboration to jump-start drug discovery and development. Clin Pharmacol Ther 87(5):614–616

    CAS  PubMed  Google Scholar 

  57. Maier D, Kalus W, Wolff M, Kalko SG, Roca J, Marin de Mas I, Turan N, Cascante M, Falciani F, Hernandez M, Villà-Freixa J, Losko S (2011) Knowledge management for systems biology a general and visually driven framework applied to translational medicine. BMC Syst Biol 5:38

    PubMed Central  PubMed  Google Scholar 

  58. Ghosh S, Matsuoka Y, Asai Y, Hsin K-Y, Kitano H (2011) Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12(12):821–832

    CAS  PubMed  Google Scholar 

  59. Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, Flynn J, Shekar M, Wang H, Park J, Cui W, Wall GD, Wisotzkey R, Alag S, Akhtari S, Ronaghi M (2010) Ontology-based meta-analysis of global collections of high-throughput public data. PLoS ONE 5(9):e13066

    Google Scholar 

  60. Huang Y-W, Huang TH-M, Wang L-S (2010) Profiling DNA methylomes from microarray to genome-scale sequencing. Technol Cancer Res Treat 9(2):139–147

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    CAS  PubMed  Google Scholar 

  62. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529–541

    Google Scholar 

  63. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SCJ, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung W-K, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei C-L, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaöz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CWH, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JNS, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PIW, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VVB, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    CAS  PubMed  Google Scholar 

  64. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Bradbury J (2003) Human epigenome project–up and running. PLoS Biol 1(3):E82

    PubMed Central  PubMed  Google Scholar 

  66. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, Andrews TD, Howe KL, Otto T, Olek A, Fischer J, Gut IG, Berlin K, Beck S (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2(12):e405

    PubMed Central  PubMed  Google Scholar 

  67. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C, Boehm B, Campo E, Caricasole A, Dahl F, Dermitzakis ET, Enver T, Esteller M, Estivill X, Ferguson-Smith A, Fitzgibbon J, Flicek P, Giehl C, Graf T, Grosveld F, Guigo R, Gut I, Helin K, Jarvius J, Kuppers R, Lehrach H, Lengauer T, Lernmark A, Leslie D, Loeffler M, Macintyre E, Mai A, Martens JH, Minucci S, Ouwehand WH, Pelicci PG, Pendeville H, Porse B, Rakyan V, Reik W, Schrappe M, Schubeler D, Seifert M, Siebert R, Simmons D, Soranzo N, Spicuglia S, Stratton M, Stunnenberg HG, Tanay A, Torrents D, Valencia A, Vellenga E, Vingron M, Walter J, Willcocks S (2012) BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotech 30(3):224–226

    CAS  Google Scholar 

  68. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18(5):780–790

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H, Yamamoto H, Hidalgo M, Tan A-C, Galm O, Ferrer I, Sanchez-Cespedes M, Villanueva A, Carmona J, Sanchez-Mut JV, Berdasco M, Moreno V, Capella G, Monk D, Ballestar E, Ropero S, Martinez R, Sanchez-Carbayo M, Prosper F, Agirre X, Fraga MF, Graña O, Perez-Jurado L, Mora J, Puig S, Prat J, Badimon L, Puca AA, Meltzer SJ, Lengauer T, Bridgewater J, Bock C, Esteller M (2011) A DNA methylation fingerprint of 1628 human samples. Genome Res 22:407

    Google Scholar 

  70. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702

    CAS  PubMed  Google Scholar 

  71. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10(9):605–616

    Google Scholar 

  73. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Macisaac KD, Fraenkel E (2010) Sequence analysis of chromatin immunoprecipitation data for transcription factors. Methods Mol Biol 674:179–193

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18

    PubMed  Google Scholar 

  77. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS (2012) Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature Methods 9:473

    Google Scholar 

  78. Korolev N, Fan Y, Lyubartsev AP, Nordenskiöld L (2012) Modelling chromatin structure and dynamics: status and prospects. Curr Opin Struct Biol 22(2):151–159

    CAS  PubMed  Google Scholar 

  79. Geng T, Bao N, Litt MD, Glaros TG, Li L, Lu C (2011) Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. Lab Chip 11(17):2842–2848

    CAS  PubMed  Google Scholar 

  80. Bock C, Tomazou EM, Brinkman AB, Müller F, Simmer F, Gu H, Jäger N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28(10):1106–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147(6):1408–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Muro EM, McCann JA, Rudnicki MA, Andrade-Navarro MA (2009) Use of SNP-arrays for ChIP assays: computational aspects. Methods Mol Biol 567:145–154

    CAS  PubMed  Google Scholar 

  83. Siegmund KD (2011) Statistical approaches for the analysis of DNA methylation microarray data. Hum Genet 129(6):585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sun S, Huang Y-W, Yan PS, Huang TH, Lin S (2011) Preprocessing differential methylation hybridization microarray data. BioData Min 4:13

    PubMed Central  PubMed  Google Scholar 

  85. Huss M (2010) Introduction into the analysis of high-throughput-sequencing based epigenome data. Brief Bioinf 11(5):512–523

    CAS  Google Scholar 

  86. Massie CE, Mills IG (2012) Mapping protein-DNA interactions using ChIP-sequencing. Methods Mol Biol 809:157–173

    CAS  PubMed  Google Scholar 

  87. Boyle AP, Song L, Lee B-K, London D, Keefe D, Birney E, Iyer VR, Crawford GE, Furey TS (2011) High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res 21(3):456–464

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefrançois P, Struhl K, Gerstein M, Snyder M (2009) Mapping accessible chromatin regions using sono-seq. Proc Natl Acad Sci USA 106(35):14926–14931

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    CAS  PubMed  Google Scholar 

  91. Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics 10(1):3–10

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354

    CAS  PubMed  Google Scholar 

  93. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EGY, Huang PYH, Welboren W-J, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KDSA, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RKM, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung W-K, Liu ET, Wei C-L, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328(5982):1161–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898

    CAS  PubMed  Google Scholar 

  98. Knight JC, Keating BJ, Rockett KA, Kwiatkowski DP (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat Genet 33(4):469–475

    CAS  PubMed  Google Scholar 

  99. McDaniell R, Lee B-K, Song L, Liu Z, Boyle AP, Erdos MR, Scott LJ, Morken MA, Kucera KS, Battenhouse A, Keefe D, Collins FS, Willard HF, Lieb JD, Furey TS, Crawford GE, Iyer VR, Birney E (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328(5975):235–239

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, Shi M, Urban AE, Hong M-Y, Karczewski KJ, Huber W, Weissman SM, Gerstein MB, Korbel JO, Snyder M (2010) Variation in transcription factor binding among humans. Science 328(5975):232–235

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Jeong J, Li L, Liu Y, Nephew KP, Huang TH-M, Shen C (2010) An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer. BMC Med Genomics 3:55

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Loss LA, Sadanandam A, Durinck S, Nautiyal S, Flaucher D, Carlton VEH, Moorhead M, Lu Y, Gray JW, Faham M, Spellman P, Parvin B (2010) Prediction of epigenetically regulated genes in breast cancer cell lines. BMC Bioinf 11:305

    Google Scholar 

  103. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone S-A (2003) ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31(1):68–71

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A, Malone J, Rustici G, Williams E, Parkinson H, Brazma A (2010) Gene expression atlas at the European Bioinformatics Institute. Nucleic Acids Res 38(Database issue):D690–D698

    Google Scholar 

  106. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim LF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39(Database issue):D1005–D1010

    Google Scholar 

  107. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    CAS  PubMed  Google Scholar 

  108. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Posekany A, Felsenstein K, Sykacek P (2011) Biological assessment of robust noise models in microarray data analysis. Bioinformatics 27(6):807–814

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kadota K, Shimizu K (2011) Evaluating methods for ranking differentially expressed genes applied to microarray quality control data. BMC Bioinf 12:227

    Google Scholar 

  111. Gibb EA, Vucic EA, Enfield KSS, Stewart GL, Lonergan KM, Kennett JY, Becker-Santos DD, MacAulay CE, Lam S, Brown CJ, Lam WL (2011) Human cancer long non-coding RNA transcriptomes. PLoS ONE 6(10):e25915

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    CAS  PubMed  Google Scholar 

  113. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens M, Gilad Y, Pritchard JK (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Hansen KD, Wu Z, Irizarry RA, Leek JT (2011) Sequencing technology does not eliminate biological variability. Nat Biotechnol 29(7):572–573

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL (2012) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30(1):99–104

    CAS  Google Scholar 

  117. Raz T, Kapranov P, Lipson D, Letovsky S, Milos PM, Thompson JF (2011) Protocol dependence of sequencing-based gene expression measurements. PLoS ONE 6(5):e19287

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Schwartz S, Oren R, Ast G (2011) Detection and removal of biases in the analysis of next-generation sequencing reads. PLoS ONE 6(1):e16685

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Brazma A (2009) Minimum information about a microarray experiment (MIAME)–successes, failures, challenges. Sci World J 9:420–423

    CAS  Google Scholar 

  120. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinf 11:94

    Google Scholar 

  121. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotech 26(3):317–325

    CAS  Google Scholar 

  122. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844

    CAS  PubMed  Google Scholar 

  124. Licatalosi DD, Darnell RB (2010) RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11(1):75–87

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Beck M, Schmidt A, Malmstroem A, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549, ISSN:1744-4292. doi:10.1038/msb.2011.82, URL:http://www.ncbi.nlm.nih.gov/pubmed/22068332. Accessed 15 Apr 2012

    Google Scholar 

  127. DeLuca DS, Marina O, Ray S, Zhang GL, Wu CJ, Brusic V (2011) Data processing and analysis for protein microarrays. Methods Mol Biol 723:337–347

    CAS  PubMed  Google Scholar 

  128. Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S (2011) Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 74(12):2660–2681

    CAS  PubMed  Google Scholar 

  129. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotech 28(7):710–721

    CAS  Google Scholar 

  130. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709

    CAS  PubMed  Google Scholar 

  131. Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9(4):263–274

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Diao L, Clarke CH, Coombes KR, Hamilton SR, Roth J, Mao L, Czerniak B, Baggerly KA, Morris JS, Fung ET, Bast RC Jr (2011) Reproducibility of SELDI spectra across time and laboratories. Cancer Inform 10:45–64

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Matthiesen R, Azevedo L, Amorim A, Carvalho AS (2011) Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 11(4):604–619

    CAS  PubMed  Google Scholar 

  134. Käll L, Vitek O (2011) Computational mass spectrometry-based proteomics. PLoS Comput Biol 7(12):e1002277

    PubMed Central  PubMed  Google Scholar 

  135. Taylor CF (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6(Suppl 2):39–44

    PubMed  Google Scholar 

  136. Jacob RJ (2010) Bioinformatics for LC-MS/MS-based proteomics. Methods Mol Biol 658:61–91

    CAS  PubMed  Google Scholar 

  137. Walhout AJ, Vidal M (2001) Protein interaction maps for model organisms. Nat Rev Mol Cell Biol 2(1):55–62

    CAS  PubMed  Google Scholar 

  138. Rinner O, Mueller LN, Hubalek M, Muller M, Gstaiger M, Aebersold R (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotech 25(3):345–352

    CAS  Google Scholar 

  139. Hutchins JRA, Toyoda Y, Hegemann B, Poser I, Hériché J-K, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters J-M (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328(5978):593–599

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Deutsch EW, Shteynberg D, Lam H, Sun Z, Eng JK, Carapito C, von Haller PD, Tasman N, Mendoza L, Farrah T, Aebersold R (2010) Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics 10(6):1190–1195

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L, Ponten F (2010) Towards a knowledge-based human protein atlas. Nat Biotech 28(12):1248–1250

    CAS  Google Scholar 

  142. Lane L, Argoud-Puy G, Britan A, Cusin I, Duek PD, Evalet O, Gateau A, Gaudet P, Gleizes A, Masselot A, Zwahlen C, Bairoch A (2012) neXtProt: a knowledge platform for human proteins. Nucleic Acids Res 40(Database issue):D76–D83

    Google Scholar 

  143. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS ONE 6(2):e16957

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703

    CAS  PubMed  Google Scholar 

  145. Lee DY, Bowen BP, Northen TR (2010) Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging. Biotechniques 49(2):557–565

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Kotera M, Hirakawa M, Tokimatsu T, Goto S, Kanehisa M (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol Biol 802:19–39

    CAS  PubMed  Google Scholar 

  148. Sinha TK, Khatib-Shahidi S, Yankeelov TE, Mapara K, Ehtesham M, Cornett DS, Dawant BM, Caprioli RM, Gore JC (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Meth 5(1):57–59

    CAS  Google Scholar 

  149. Griffin JL, Steinbeck C (2010) ‘So what have data standards ever done for us? The view from metabolomics. Genome Med 2(6):38

    PubMed Central  PubMed  Google Scholar 

  150. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinf 7(1):96–108

    CAS  Google Scholar 

  151. Carroll AJ, Badger MR, Harvey Millar A (2010) The metabolomeexpress project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinf 11:376

    Google Scholar 

  152. Kastenmüller G, Römisch-Margl W, Wägele B, Altmaier E, Suhre K (2011) metaP-server: a web-based metabolomics data analysis tool. J Biomed Biotechnol 2011

    Google Scholar 

  153. Gika HG, Theodoridis GA, Earll M, Snyder RW, Sumner SJ, Wilson ID (2010) Does the mass spectrometer define the marker? A comparison of global metabolite profiling data generated simultaneously via UPLC-MS on two different mass spectrometers. Anal Chem 82(19):8226–8234

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610

    Google Scholar 

  155. Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A, Dahmen N, Prokisch H, Xie L, Li Y, Wichmann H-E, Peters A, Kronenberg F, Suhre K, Adamski J, Illig T, Wang-Sattler R (2011) Differences between human plasma and serum metabolite profiles. PLoS ONE 6(7):e21230

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    CAS  PubMed  Google Scholar 

  157. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    PubMed Central  PubMed  Google Scholar 

  158. Shevchenko A. Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598

    Google Scholar 

  159. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CRH, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    CAS  PubMed  Google Scholar 

  161. Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811(11):925–934

    CAS  PubMed  Google Scholar 

  162. Chaurand P, Cornett DS, Angel PM, Caprioli RM (2011) From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 10(2):O110.004259

    Google Scholar 

  163. Nordström A, O’Maille G, Qin C, Siuzdak G (2006) Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal Chem 78(10):3289–3295

    PubMed Central  PubMed  Google Scholar 

  164. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf 11:395

    Google Scholar 

  165. Orešič M (2011) Informatics and computational strategies for the study of lipids. Biochim Biophys Acta 1811(11):991–999

    PubMed  Google Scholar 

  166. Schmelzer K, Fahy E, Subramaniam S, Dennis EA (2007) The lipid maps initiative in lipidomics. Meth Enzymol 432:171–183

    CAS  PubMed  Google Scholar 

  167. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AH Jr, Sullards MC, Wang E, Murphy RC, Raetz CRH, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S (2010) A mouse macrophage lipidome. J Biol Chem 285(51):39976–39985

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Niemelä PS, Castillo S, Sysi-Aho M, Oresic M (2009) Bioinformatics and computational methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2855–2862

    PubMed  Google Scholar 

  169. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin A-C (2010) Visualization of omics data for systems biology. Nat Methods 7(3 Suppl):S56–S68

    CAS  PubMed  Google Scholar 

  170. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Glaab E (2011) Analysing functional genomics data using novel ensemble,consensus and data fusion techniques. University of Nottingham, Nottingham

    Google Scholar 

  172. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    PubMed  Google Scholar 

  173. Mueller LN, Brusniak M-Y, Mani DR, Aebersold R (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7(1):51–61

    CAS  PubMed  Google Scholar 

  174. Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M (2011) Algorithms and tools for the preprocessing of LC–MS metabolomics data. Chemometrics Intell Lab Syst 108(1):23–32

    CAS  Google Scholar 

  175. Tritchler D, Parkhomenko E, Beyene J (2009) Filtering genes for cluster and network analysis. BMC Bioinf 10:193

    Google Scholar 

  176. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1(1):24–45

    CAS  Google Scholar 

  177. Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J (2010) Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38(Web Server):W210–W213

    Google Scholar 

  178. Vallon-Christersson J, Nordborg N, Svensson M, Häkkinen J (2009) BASE—2nd generation software for microarray data management and analysis. BMC Bioinf 10:330

    Google Scholar 

  179. Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA (2011) MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol 7(7):e1002119

    Google Scholar 

  180. Chaiboonchoe A, Samarasinghe S, Kulasiri D (2009) Machine learning for childhood acute lymphoblastic leukaemia gene expression data analysis: a review. Curr Bioinform 5(2):118–133

    Google Scholar 

  181. Schummer M, Green A, Beatty JD, Karlan BY, Karlan S, Gross J, Thornton S, McIntosh M, Urban N (2010) Comparison of breast cancer to healthy control tissue discovers novel markers with potential for prognosis and early detection. PLoS ONE 5(2):e9122

    PubMed Central  PubMed  Google Scholar 

  182. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SAA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER (2010) Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med 181(4):315–323

    PubMed Central  PubMed  Google Scholar 

  183. Just J, Gouvis-Echraghi R, Rouve S, Wanin S, Moreau D, Annesi Maesano I (2012) Two novel severe asthma phenotypes identified during childhood using a clustering approach. Official Journal of the European Society for Clinical Respiratory Physiology, The European Respiratory Journal

    Google Scholar 

  184. Bjornsdottir US, Holgate ST, Reddy PS, Hill AA, McKee CM, Csimma CI, Weaver AA, Legault HM, Small CG, Ramsey RC, Ellis DK, Burke CM, Thompson PJ, Howarth PH, Wardlaw AJ, Bardin PG, Bernstein DI, Irving LB, Chupp GL, Bensch GW, Bensch GW, Stahlman JE, Karetzky M, Baker JW, Miller RL, Goodman BH, Raible DG, Goldman SJ, Miller DK, Ryan JL, Dorner AJ, Immermann FW, O’Toole M (2011) Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS ONE 6(7):e21902

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Bellman R (1961) Adaptive control processes. Princeston University Press, Princeston

    Google Scholar 

  186. Kusiak A (2001) Feature transformation methods in data mining. IEEE Trans Electron Packaging Manuf 24(3):214–221

    Google Scholar 

  187. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. JMachine Learn Res 3:1157–1182

    Google Scholar 

  188. Dy JG (2008) Unsupervised feature selection. Comput Methods Feature Sel 2008:19–39

    Google Scholar 

  189. Tsamardinos I, Aliferis CF (2003) Towards principled feature selection: relevancy, filters and wrappers. In: Proceedings of the 9th international workshop on artificial intelligence and statistics, 2003

    Google Scholar 

  190. Bozinov D, Rahnenführer J (2002) Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering. Bioinformatics 18(5):747

    CAS  PubMed  Google Scholar 

  191. Katzer M, Kummert F, Sagerer G (2003) Methods for automatic microarray image segmentation. IEEE Transactions on NanoBiosci 2(4):202–214

    Google Scholar 

  192. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    CAS  PubMed  Google Scholar 

  193. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci 98(1):31

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Lazaridis EN, Sinibaldi D, Bloom G, Mane S, Jove R (2002) A simple method to improve probe set estimates from oligonucleotide arrays. Math Biosci 176(1):53–58

    CAS  PubMed  Google Scholar 

  195. Shakya K, Ruskin H, Kerr G, Crane M, Becker J (2010) Comparison of microarray preprocessing methods. In: Arabina HR (ed) Advances in computational biology. Springer, New York, pp 139–147

    Google Scholar 

  196. Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328

    CAS  PubMed  Google Scholar 

  197. Hastings CA, Norton SM, Roy S (2002) New algorithms for processing and peak detection in liquid chromatography/mass spectrometry data. Rapid Commun Mass Spectrom 16(5):462–467

    CAS  PubMed  Google Scholar 

  198. Smith CA, Elizabeth J, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    CAS  PubMed  Google Scholar 

  199. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    CAS  PubMed  Google Scholar 

  200. Hu Q, Pan W, An S, Ma P, Wei J (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. International Journal of Machine Learning and, Cybernetics, pp 1–12

    Google Scholar 

  201. Hall MA (1999) Correlation-based feature selection for machine learning. The University of Waikato, Waikato

    Google Scholar 

  202. Wu Y, Zhang A (2004) Feature selection for classifying high-dimensional numerical data. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (CVPR 2004), vol. 2, p 251

    Google Scholar 

  203. Xing EP, Jordan MI, Karp RM, et al. (2001) Feature selection for high-dimensional genomic microarray data. In: Machine learning-international workshop then conference, 2001, pp 601–608

    Google Scholar 

  204. Li L, Pedersen LG, Darden TA, Weinberg CR (2002) Computational analysis of leukemia microarray expression data using the GA/KNN method. In: Methods of microarray data analysis: papers from CAMDA’00, pp 81–95

    Google Scholar 

  205. Blanco R, Larrañaga P, Inza I, Sierra B (2001) Selection of highly accurate genes for cancer classification by estimation of distribution algorithms. In: Workshop of Bayesian models in medicine. AIME 2001, pp 29–34

    Google Scholar 

  206. Inza I, Sierra B, Blanco R, Larrañaga P (2002) Gene selection by sequential search wrapper approaches in microarray cancer class prediction. J Intell Fuzzy Syst 12(1):25–33

    Google Scholar 

  207. Liu J, Iba H, Ishizuka M (2001) Selecting informative genes with parallel genetic algorithms in tissue classification. Genome Inform 12:14–23

    Google Scholar 

  208. Chen YW, Lin CJ (2006) Combining SVMs with various feature selection strategies. In: Isabella G, Andre E (eds) Feature extraction, Springer, Berlin, pp 315–324

    Google Scholar 

  209. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2011) An ensemble of filters and classifiers for microarray data classification. Pattern Recogn 45:531

    Google Scholar 

  210. Sun M, Xiong M (2003) A mathematical programming approach for gene selection and tissue classification. Bioinformatics 19(10):1243

    CAS  PubMed  Google Scholar 

  211. Subramani P, Sahu R, Verma S (2006) Feature selection using haar wavelet power spectrum. BMC Bioinf 7(1):432

    Google Scholar 

  212. Koller D, Friedman N (2009) Probabilistic graphical models principles and techniques. MIT press, Cambridge

    Google Scholar 

  213. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction, 1st edn. Springer, Berlin

    Google Scholar 

  214. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Machine Learn Res 9(2579–2605):2579–2605

    Google Scholar 

  215. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Data mining, inference, and prediction. Springer, New York

    Google Scholar 

  216. Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008) Support vector machines and kernels for computational biology. PLoS Comput Biol 4(10):e1000173

    PubMed Central  PubMed  Google Scholar 

  217. Breiman L, Schapire E (2001) Random forests. Machine Learn 45:5–32

    Google Scholar 

  218. Chapelle O, Schölkopf B, Zien A (2010) Semi-supervised learning. MIT Press, Cambridge

    Google Scholar 

  219. Koski T (2002) Hidden Markov models of bioinformatics, 1st ed. Springer, Berlin

    Google Scholar 

  220. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L, Mori T, Chang D-E, DiRuggiero J, Johnson CH, Hood L, Baliga NS (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131(7):1354–1365

    CAS  PubMed  Google Scholar 

  221. Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8

    Google Scholar 

  222. Tsuruoka Y, Miwa M, Hamamoto K, Tsujii J, Ananiadou S (2011) Discovering and visualizing indirect associations between biomedical concepts. Bioinformatics 27(13):i111

    Google Scholar 

  223. Roche M, Prince V (2010) A web-mining approach to disambiguate biomedical acronym expansions. Informatica (Slovenia) 34(2):243–253

    Google Scholar 

  224. Hakenberg J, Plake C, Royer L, Strobelt H, Leser U, Schroeder M (2008) Gene normalization and interaction with context and sentence motifs. Genome Biol 9(Suppl 2):S14

    Google Scholar 

  225. Seringhaus MB, Cayting PD, Gerstein MB (2008) Uncovering trends in gene naming. Genome Biol 9(1):401

    Google Scholar 

  226. Leaman R, Gonzalez G (2008) BANNER: an executable survey of advances in biomedical named entity recognition. In: Pacific symposium on biocomputing, pp 652–663

    Google Scholar 

  227. Marsh E, Perzanowski D (1998) MUC-7 evaluation of IE technology: overview of results. In: Proceedings of the 7th message understanding conference (MUC-7)

    Google Scholar 

  228. Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, Valencia A (2005) Text mining for metabolic pathways, signaling cascades, and protein networks. Sci STKE 2005(283):e21

    Google Scholar 

  229. Kim J-D, Ohta T, Pyysalo S, Kano Y, Tsujii J (2011) Extracting bio-molecular events from literature—the BioNLP’09 shared task. Comput Intell 27(4):513–540

    Google Scholar 

  230. Björne J, Ginter F, Pyysalo S, Tsujii J, Salakoski T (2010) Complex event extraction at PubMed scale. Bioinformatics [ISMB] 26(12):382–390

    Google Scholar 

  231. McClosky D, Surdeanu M, Manning CD (2011) Event extraction as dependency parsing. In: ACL 2011, pp 1626–1635

    Google Scholar 

  232. Riedel S, McCallum A (2011) Fast and robust joint models for biomedical event extraction. In: EMNLP 2011, pp 1–12

    Google Scholar 

  233. Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. In: ECCB/JBI 2005, p 258

    Google Scholar 

  234. Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U (2006) ALIBABA: PubMed as a graph. Bioinformatics 22(19):2444–2445

    CAS  PubMed  Google Scholar 

  235. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(suppl 1):D452–D455

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Fleuren WWM, Verhoeven S, Frijters R, Heupers B, Polman J, , van Schaik R, de Vlieg J, Alkema W (2011) CoPub update: CoPub 5.0 a text mining system to answer biological questions. Nucleic Acids Res 39(Web Server):W450–W454

    Google Scholar 

  237. Ramanan VK, Shen L, Moore JH, Saykin AJ (2012) Pathway analysis of genomic data: concepts, methods and prospects for future development. Trends Genet 28(7): 323–332, ISSN:0168-9525. doi:10.1016/j.tig.2012.03.004

  238. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation. Visualization, and integrated discovery. Genome Biol 4(5):P3

    PubMed Central  PubMed  Google Scholar 

  239. Alibés A, Yankilevich P et al (2007) IDconverter and IDClight: conversion and annotation of gene and protein IDs’. BMC Bioinf 8(1):9

    Google Scholar 

  240. Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomart. Nat Protoc 4(8):1184–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Kim SY, Volsky D (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinf 6(1):144

    Google Scholar 

  243. Luo W, Friedman M, Shedden K, Hankenson K, Woolf P (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf 10(1):161

    Google Scholar 

  244. Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14):1650

    CAS  PubMed  Google Scholar 

  245. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A (2007) GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 8(1):R3

    PubMed Central  PubMed  Google Scholar 

  246. Schuster S, Hlgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2(2):165–182

    Google Scholar 

  247. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theoretical Biol 203(3):229–248

    Google Scholar 

  248. Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23(5):561–566

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Ma X, Tarone AM, Li W (2008) Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS ONE 3(4):e1922

    PubMed Central  PubMed  Google Scholar 

  250. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, Onland-Moret NC (2009) Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33(5):419–431

    PubMed  Google Scholar 

  251. Markowitz SD, Bertagnolli MM (2009) Molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Xu X, Cao L, Chen X (2008) Elementary flux mode analysis for optimized ethanol yield in anaerobic fermentation of glucose with Saccharomyces cerevisiae. Chin J Chem Eng 16(1):135–142

    CAS  Google Scholar 

  253. Cerami E, Demir E, Schultz N, Taylor BS, Sander C (2010) Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5(2):e8918

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, the University of Luxembourg and the ISB, and in part by the EU grants to CA in the context of the MeDALL consortium (Mechanisms of the Development of Allergy, Grant Agreement FP7 N°264357) and the U-BIOPRED consortium (Unbiased Biomarkers for the PREDiction of respiratory disease outcomes, Grant Agreement IMI 115010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Ballereau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ballereau, S. et al. (2013). Functional Genomics, Proteomics, Metabolomics and Bioinformatics for Systems Biology. In: Prokop, A., Csukás, B. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6803-1_1

Download citation

Publish with us

Policies and ethics