Skip to main content

Host Molecular Chaperones: Cell Surface Receptors for Viruses

  • Chapter
  • First Online:
Moonlighting Cell Stress Proteins in Microbial Infections

Part of the book series: Heat Shock Proteins ((HESP,volume 7))

  • 1049 Accesses

Abstract

Molecular chaperones play important roles in maintaining cellular homeostasis under normal conditions. They also participate in a post-translational quality control system, maintaining the correct conformation of proteins under changing environmental conditions. While most molecular chaperones localize in the cytosol, some can exist outside the cell and are involved in moonlighting activities. It has been reported that some molecular chaperones at the cell surface act as receptors for viruses. Viruses using molecular chaperones as their receptors take advantage of these molecules to enable efficient introduction of their genomes into the cell and/or for selection of favorable target cells and of replication-competent virions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SG, Kim SA, Yoon JH, Vacratsis P (2005) Heat-shock cognate 70 is required for the activation of heat-shock factor 1 in mammalian cells. Biochem J 392:145–152

    Article  PubMed  CAS  Google Scholar 

  • Ali KS, Dorgai L, Abrahám M, Hermesz E (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509

    Article  PubMed  CAS  Google Scholar 

  • Bajramovic JJ, Münter S, Syan S, Nehrbass U, Brahic M, Gonzalez-Dunia D (2003) Borna disease virus glycoprotein is required for viral dissemination in neurons. J Virol 77:12222–12231

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Johnson JE (2008) Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9:16–27

    Article  PubMed  CAS  Google Scholar 

  • Bloor S, Maelfait J, Krumbach R, Beyaert R, Randow F (2010) Endoplasmic reticulum chaperone gp96 is essential for infection with vesicular stomatitis virus. Proc Natl Acad Sci U S A 107:6970–6975

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Martin RL, Hansen WJ, Beckmann RP, Welch WJ (1993) The constitutive and stress inducible forms of Hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J Cell Biol 120:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Buchholz CJ, Schneider U, Devaux P, Gerlier D, Cattaneo R (1996) Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J Virol 70:3716–3723

    PubMed  CAS  Google Scholar 

  • Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96:5645–5650

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392

    Article  PubMed  Google Scholar 

  • Carsillo T, Carsillo M, Niewiesk S, Vasconcelos D, Oglesbee M (2004) Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006) Hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Salinas S, Ceballos-Olvera I, Reyes-Del Valle J, Medina F, Del Angel RM (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus Res 138:111–118

    Article  PubMed  CAS  Google Scholar 

  • Clemente R, de Parseval A, Perez M, de la Torre JC (2009) Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. J Virol 83:2655–2662

    Article  PubMed  CAS  Google Scholar 

  • Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57

    Article  PubMed  CAS  Google Scholar 

  • de Haan CA, Li Z, te Lintelo E, Bosch BJ, Haijema BJ, Rottier PJ (2005) Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol 79:14451–14456

    Article  PubMed  Google Scholar 

  • Ellis RJ (1997) Do molecular chaperones have to be proteins? Biochem Biophys Res Commun 238:687–692

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Aumüller T (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 148:105–150

    Article  PubMed  CAS  Google Scholar 

  • Galat A (2004) Function-dependent clustering of orthologues and paralogues of cyclophilins. Proteins 56:808–820

    Article  PubMed  CAS  Google Scholar 

  • Gerlier D (2011) Emerging zoonotic viruses: new lessons on receptor and entry mechanisms. Curr Opin Virol 1:27–34

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci U S A 103:5817–5822

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Dunia D, Cubitt B, de la Torre JC (1998) Mechanism of Borna disease virus entry into cells. J Virol 72:783–788

    PubMed  CAS  Google Scholar 

  • Gonzalez-Gronow M, Kaczowka SJ, Payne S, Wang F, Gawdi G, Pizzo SV (2007) Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel. J Biol Chem 282:32811–32820

    Article  PubMed  CAS  Google Scholar 

  • Gosztonyi G, Ludwig H (2001) Interactions of viral proteins with neurotransmitter receptors may protect or destroy neurons. Curr Top Microbiol Immunol 253:121–144

    Article  PubMed  CAS  Google Scholar 

  • Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Méndez E, Zárate S, Isa P, López S, Arias CF (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A 97:14644–14649

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  PubMed  CAS  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y (2011) Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol 18:135–141

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Allan E, Coates AR (2006) Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 74:3693–3706

    Article  PubMed  CAS  Google Scholar 

  • Hewish MJ, Takada Y, Coulson BS (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells. J Virol 74:228–236

    Article  PubMed  CAS  Google Scholar 

  • Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Horie M, Daito T, Ikuta K, Tomonaga K (2009) Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J Virol 83:12622–12625

    Article  PubMed  CAS  Google Scholar 

  • Huet C, Ash JF, Singer SJ (1980) The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts. Cell 21:429–438

    Article  PubMed  CAS  Google Scholar 

  • Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Jameel S (2011) Virus entry paradigms. Amino Acids 41:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Kambara H, Tani H, Mori Y, Abe T, Katoh H, Fukuhara T, Taguwa S, Moriishi K, Matsuura Y (2011) Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology 412:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Ko YG (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6:2444–2453

    Article  PubMed  CAS  Google Scholar 

  • Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim SS (2010) Current implications of cyclophilins in human cancers. J Exp Clin Cancer Res 29:97

    Article  PubMed  Google Scholar 

  • Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Bode L (2000) Borna disease virus: new aspects on infection, disease, diagnosis and epidemiology. Rev Sci Tech 19:259–288

    PubMed  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977

    Article  PubMed  CAS  Google Scholar 

  • Machy P, Truneh A, Gennaro D, Hoffstein S (1987) Endocytosis and de novo expression of major histocompatibility complex encoded class I molecules: kinetic and ultrastructural studies. Eur J Cell Biol 45:126–136

    PubMed  CAS  Google Scholar 

  • Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2008) Heterotrimeric Galphaq11 co-immunoprecipitates with surface-anchored GRP78 from plasma membranes of alpha2M*-stimulated macrophages. J Cell Biochem 104:96–104

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Chu CT, Gawdi G, Pizzo SV (1994) Evidence for a second alpha 2-macroglobulin receptor. J Biol Chem 269:12541–12547

    PubMed  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem 277:42082–42087

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Moss WJ, Griffin DE (2006) Global measles elimination. Nat Rev Microbiol 4:900–908

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Desprès P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728

    Article  PubMed  CAS  Google Scholar 

  • Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Helenius A (2003) Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422

    Article  PubMed  CAS  Google Scholar 

  • Perez M, Watanabe M, Whitt MA, de la Torre JC (2001) N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J Virol 75:7078–7085

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Vargas J, Romero P, López S, Arias CF (2006) The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 80:3322–3331

    Article  PubMed  Google Scholar 

  • Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  PubMed  CAS  Google Scholar 

  • Richt JA, Fürbringer T, Koch A, Pfeuffer I, Herden C, Bause-Niedrig I, Garten W (1998) Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin. J Virol 72:4528–4533

    PubMed  CAS  Google Scholar 

  • Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jäättelä M (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19:570–582

    Article  PubMed  CAS  Google Scholar 

  • Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypiä T (1994) Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357–365

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Wenthold RJ (1999) Calnexin and the immunoglobulin binding protein (BiP) coimmunoprecipitate with AMPA receptors. J Neurochem 73:942–948

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Yoneda M, Honda T, Kai C (2012) Morbillivirus receptors and tropism: multiple pathways for infection. Front Microbiol 3:75

    PubMed  CAS  Google Scholar 

  • Schmid FX (1993) Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct 22:123–142

    Article  PubMed  CAS  Google Scholar 

  • Strebel K, Luban J, Jeang KT (2009) Human cellular restriction factors that target HIV-1 replication. BMC Med 7:48

    Article  PubMed  Google Scholar 

  • Su HL, Liao CL, Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76:4162–4171

    Article  PubMed  CAS  Google Scholar 

  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  PubMed  CAS  Google Scholar 

  • Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656

    Article  PubMed  CAS  Google Scholar 

  • Thongtan T, Wikan N, Wintachai P, Rattanarungsan C, Srisomsap C, Cheepsunthorn P, Smith DR (2012) Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. J Med Virol 84:615–623

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga K, Kobayashi T, Ikuta K (2002) Molecular and cellular biology of Borna disease virus infection. Microbes Infect 4:491–500

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M (2003) Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle. Virology 317:128–135

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K, Wilson KM, Takada Y, Fernandez N, Stanway G (1999) Involvement of beta2-microglobulin and integrin alphavbeta3 molecules in the coxsackievirus A9 infectious cycle. J Gen Virol 80(Pt 10):2591–2600

    PubMed  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick RL (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2:338–345

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  PubMed  CAS  Google Scholar 

  • Valyi-Nagy T, Dermody TS (2005) Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 20:957–967

    PubMed  CAS  Google Scholar 

  • Vlasak M, Goesler I, Blaas D (2005) Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. J Virol 79:5963–5970

    Article  PubMed  CAS  Google Scholar 

  • Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21:359–367

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Article  PubMed  Google Scholar 

  • Watanabe A, Yoneda M, Ikeda F, Terao-Muto Y, Sato H, Kai C (2010) CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol 84:4183–4193

    Article  PubMed  CAS  Google Scholar 

  • Whittaker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246:1–23

    Article  PubMed  CAS  Google Scholar 

  • Ylinen LM, Schaller T, Price A, Fletcher AJ, Noursadeghi M, James LC, Towers GJ (2009) Cyclophilin A levels dictate infection efficiency of human immunodeficiency virus type 1 capsid escape mutants A92E and G94D. J Virol 83:2044–2047

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912

    Article  PubMed  CAS  Google Scholar 

  • Zhu YZ, Cao MM, Wang WB, Wang W, Ren H, Zhao P, Qi ZT (2012) Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J Gen Virol 93:61–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Young Scientists (KAKENHI) from Japan Society for the Promotion of Science (JSPS) (JSPS KAKENHI Grant Numbers 23790496 and 25860336 T.H.), and Funding Program for Next Generation World-Leading Researchers (NEXT program) from JSPS (K.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Honda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Honda, T., Tomonaga, K. (2013). Host Molecular Chaperones: Cell Surface Receptors for Viruses. In: Henderson, B. (eds) Moonlighting Cell Stress Proteins in Microbial Infections. Heat Shock Proteins, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_19

Download citation

Publish with us

Policies and ethics