Skip to main content

Considerable Analytical Methods

  • Chapter
  • First Online:
Dynamics and Vibrations

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 202))

  • 2836 Accesses

Abstract

The harmonic balance method (HBM) is a technique used in systems including both linear and nonlinear parts. The fundamental idea of HBM is to decompose the system into two separate subsystems, a linear part and a nonlinear part. The linear part is treated in the frequency domain, and the nonlinear part in the time domain. The interface between the subsystems consists of the Fourier transform pair. Harmonic balance is said to be reached when a chosen number of harmonics N satisfy some predefined convergence criteria. First, an appropriate unknown is chosen to use in the convergence check, which is performed in the frequency domain. Then the equations are rewritten in a suitable form for a convergence loop. One starts with an initial value of the chosen unknown, applies the different linear and nonlinear equations, and finally reaches a new value of the chosen unknown. If the difference between the initial value and the final value of the first N harmonics satisfies the predefined convergence criteria, harmonic balance is reached. Otherwise, an increment of the initial value is calculated by using a generalized Euler method—namely, the Newton–Raphson method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Halim Hassan, I.H.: Different applications for differential transformation in the differential equations. J. Appl. Math. Comput. 129, 183–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian, G.: New approach to nonlinear partial differential equations. J. Math. Anal. Appl. 102, 420–434 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 13(7), 17–43 (1992)

    Article  MathSciNet  Google Scholar 

  • Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994a)

    Book  MATH  Google Scholar 

  • Adomian, G.: Solution of physical problems by decomposition. Comput. Math. Appl. 27, 145–154 (1994b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ayaz, F.: Solutions of the system of differential equations by differential transform method. Appl. Math. Comput. 147, 547–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, G.A. Jr.: Essentials of PadĂ© Approximants in Theoretical Physics, pp. 27–38. Academic Press, New York (1975)

    Google Scholar 

  • Fereidoon, A., Kordani, N., Rostamiyan, Y., Ganji, D.D.: Analytical solution to determine displacement of nonlinear oscillations with parametric excitation by differential transformation method. Math. Comput. Appl. 15(5), 810–815 (2010)

    MathSciNet  MATH  Google Scholar 

  • Ganji, D.D.: Approximate analytical solutions to nonlinear oscillators using He’s amplitude-frequency formulation. Int. J. Math. Anal. 4(32), 1591–1597 (2010)

    Google Scholar 

  • Ganji, D.D., Esmaeilpour, M.: Soheil Soleimani: approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Int. J. Comput. Math. 87(9), 2014–2023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ganji, D.D., Kachapi, S.H.H.: Analysis of Nonlinear Equations in Fluids, Progress in Nonlinear Science, vol. 3, pp. 1–293. Asian Academic Publisher Limited, Hong Kong (2011a)

    Google Scholar 

  • Ganji, D.D., Kachapi, S.H.H.: Analytical and Numerical Methods in Engineering and Applied Sciences, Progress in Nonlinear Science, vol. 3, pp. 1–579. Asian Academic Publisher Limited, Hong Kong (2011b)

    Google Scholar 

  • Ganji, D.D., Kachapi, S.H.H.: Nonlinear Analysis in Science and Engineering. Cambridge International Science Publisher, Cambridge (in press, 2013a)

    Google Scholar 

  • Ganji, D.D., Kachapi, S.H.H.: Nonlinear Differential Equations: Analytical Methods and Application. Cambridge International Science Publisher associated with Springer (in press, 2013b)

    Google Scholar 

  • Ganji, D.D., Nourollahi, M., Rostamian, M.: A comparison of variational iteration method with Adomian’s decomposition method in some highly nonlinear equations. Int. J. Sci. Technol. 2(2), 179–188 (2007)

    Google Scholar 

  • Ganji, S.S., Sfahani, M.G., Modares Tonekaboni, S.M., Moosavi, A.K., Ganji, D.D.: Higher-order solutions of coupled systems using the parameter expansion method. Math. Probl. Eng. 2009, Article ID 327462, 1–20 (2009a)

    Google Scholar 

  • Ganji, S.S., Ganji, D.D., Ganji, Z.Z., Karimpour, S.: Periodic solution for strongly nonlinear vibration systems by He’s energy balance method. Acta Applicandae Mathematicae 106(1), 79–92 (2009b). doi:10.1007/s10440-008-9283-6

    Article  MathSciNet  MATH  Google Scholar 

  • Ganji, S.S., Ganji, D.D., Babazadeh, H., Sadoughi, N.: Application of amplitude- frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back. Math. Methods Appl. Sci. 33(2), 157–166 (2010a)

    Google Scholar 

  • Ganji, D.D., Alipour, M.M., Fereidoon, A.H., Rostamiyan, Y.: Analytic approach to investigation of fluctuation and frequency of the oscillators with odd and even nonlinearities. IJE Trans. A: Basics 23, 41–56 (2010b)

    MATH  Google Scholar 

  • Gupta, V.H., Munjal, M.L.: On numerical prediction of the acoustic source characteristics of an engine exhaust system. J. Acoust. Soc. Am. 92(5), 2716–2725 (1992)

    Article  Google Scholar 

  • Hassan, I.H.A.H.: On solving some eigenvalue-problems by using a differential transformation. Appl. Math. Comput. 127(1), 1–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hassan, I.H.A.H.: Differential transformation technique for solving higher-order initial value problems. Appl. Math. Comput. 154(2), 299–311 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H.: Bookkeeping parameter in perturbation methods. Int. J. Non-linear Sci. Numer. Simul. 2, 257–264 (2001a)

    MATH  Google Scholar 

  • He, J.H.: Modified Lindstedt–Poincare methods for some non-linear oscillations. Part III: double series expansion. Int. J. Non-linear Sci. Numer. Simul. 2, 317–320 (2001b)

    Google Scholar 

  • He, J.H.: Modified Lindstedt–Poincare methods for some strongly non-linear oscillations. Part II: a new transformation. Int. J. Non-linear Mech. 37(2), 309–314 (2002)

    Google Scholar 

  • He, J.-H.: Solution of nonlinear equations by an ancient Chinese algorithm. Appl. Math. Comput. 151(1), 293–297 (2004)

    Google Scholar 

  • Kimiaeifar, A., Saidi, A.R., Bagheri, G.H., Rahimpour, M., Domairry, D.G.: Analytical solution for Van der Pol–Duffing oscillators. Chaos, Solitons & Fractals 42(5), 2660–2666 (2009a)

    Google Scholar 

  • Kimiaeifar, A., Saidi, A.R., Sohouli, A.R., Ganji, D.D.: Analysis of modified Van der Pol’s oscillator using He’s parameter-expanding methods. Curr. Appl. Phys 10 (2010)

    Google Scholar 

  • Liu, L., Dowell, E.H.: Harmonic balance approach for an airfoil with a freeplay control surface. AIAA J. 43(4), 802 (2005)

    Article  Google Scholar 

  • Liu, H., Song, Y.: Differential transform method applied to high index differential-algebraic equations. Appl. Math. Comput. 184, 748–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, L., Thomas, J.P., Dowell, E.H., Attar, P., Hall, K.C.: A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. J. Comput. Phys. 215(1), 298–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, X.-G.: A two-step Adomian decomposition method. Appl. Math. Comput. 170(1), 570–583 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Momani, S., ErtĂĽrk, V.S.: Solutions of non-linear oscillators by the modified differential transform method. Comput. Math. Appl. 55(4), 833–842 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Momeni, M., Jamshidi, N., Barari, A., Ganji, D.D.: Application of He’s energy balance method to Duffing-harmonic oscillators. Int. J. Comput. Math. 88(1), 135–144 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Momeni, M., Jamshidi, N., Barari, A., Ganji, D.D.: Application of He’s energy balance method to Duffing-harmonic oscillators. Int. J. Comput. Math. 88(1), 135–144 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  • Ragulskis, M., Fedaravicius, A., Ragulskis, K.: Harmonic balance method for FEM analysis of fluid flow in a vibrating pipe. Commun. Numer. Methods Eng. 22(5), 347–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Sadighi, A., Ganji, D.D.: Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 367(1–2), 83–87 (2007)

    Google Scholar 

  • Sadighi, A., Ganji, D.D.: Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 372(4), 465–469 (2008a)

    Google Scholar 

  • Sadighi, A., Ganji, D.D.: A study on one dimensional nonlinear thermoelasticity by Adomian decomposition method. World J. Model. Simul. 4(1), 19–25 (2008b)

    Google Scholar 

  • Sadighi, A., Ganji, D.D., Sabzehmeidani, Y.: A decomposition method for volume flux and average velocity of thin film flow of a third grade fluid down an inclined plane. Adv. Theor. Appl. Mech. 1(1), 45–59 (2008)

    MATH  Google Scholar 

  • Safari, M., Ganji, D.D., Moslemi, M.: Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation. Comput. Math. Appl. 58(11–12), 2091–2097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Telli, S., Kopmaz, O.: Free vibrations of a mass grounded by linear and non-linear springs in series. J. Sound Vib. 289, 689–710 (2006)

    Article  Google Scholar 

  • Wang, S.-Q., He, J.-H.: Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Solitons Fractals 35, 688–691 (2008)

    Google Scholar 

  • Wazwaz, A.M.: The modified decomposition method and the Pade approximants for solving Thomas–Fermi equation. Appl. Math. Comput. 105, 11–19 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: A reliable modification of Adomian decomposition method. Appl. Math. Comput. 102, 77–86 (1999b)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos, Solitons Fractals 12, 2283–2293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, D.M., Wang, Z.: A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Comput. Phys. Commun. 174(6), 447–463 (2006)

    Article  Google Scholar 

  • Zhang, B.-Q., Luo, X.-G., Wu, Q.-B.: The restrictions and improvement of the Adomian decomposition method. Appl. Math. Comput. 171(1), 99–104 (2006)

    Article  MathSciNet  Google Scholar 

  • Zhou, J.K.: Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyid Habibollah Hashemi Kachapi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hashemi, S.H., Domairry, D. (2014). Considerable Analytical Methods. In: Dynamics and Vibrations. Solid Mechanics and Its Applications, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6775-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6775-1_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6774-4

  • Online ISBN: 978-94-007-6775-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics