Skip to main content

Sensing of Crop Properties

  • Chapter
  • First Online:
Precision in Crop Farming

Abstract

Sensing of crops by visible and infrared reflectance allows estimating the chlorophyll concentration within leaves as well as the leaf-area-index. The product of the chlorophyll concentration within leaves and the leaf-area-index supplies the chlorophyll content per unit field area. Recording this criterion repeatedly during the season provides reliable estimates of the site-specific yield potential as based on past growing conditions.

Fluorescent light too can sense the chlorophyll concentration within leaves or the functioning of the photosynthetic apparatus of crops. Infrared reflectance as well as thermal radiation can be used to get information about the site-specific water supply of crops. From the backscatter of radar waves, information about the biomass, the leaf-area-index and especially about the crop species for vegetation classification within large agricultural areas can be obtained.

Proximal sensing from farm machines allows direct site-specific control of farm operations in real-time. On the other hand, remote sensing from satellites lends itself for repeated recording of fields or larger areas during the growing season. Yet remote sensing needs radiation that can penetrate the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alchanatis V, Cohen Y, Cohen S, Moeller M, Sprinstin M, Meron M, Tsipris J, Saranga Y, Sela E (2010) Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precis Agric 11:27–41

    Article  Google Scholar 

  • Brisco B, Brown RJ (1998) Agricultural applications with radar. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar. Manual of remote sensing, 3 edn, vol. 2. Wiley & Sons, New York

    Google Scholar 

  • Buerling K, Hunsche M, Noga G (2009) Early detection of puccinia triticina infection in susceptible and resistant wheat cultivars by chlorophyll fluorescence imaging technique. In: van Henten EJ, Goense D, Lockhorst C (eds) Precision agriculture ´09. Wageningen Academic Publishers, Wageningen, pp 211–217

    Google Scholar 

  • Buschmann C, Lichtenthaler HK (1998) Principles and characteristics of multi-colour fluorescence imaging of plants. J Plant Physiol 152:297–314

    Article  CAS  Google Scholar 

  • Camp CR, Sadler EJ, Evans RG (2006) Precision water management: current realities, possibilities and trends. In: Srinivasan A (ed) Handbook of precision agriculture. Principles and applications. Haworth Press, Binghamton

    Google Scholar 

  • Ciganda VS, Gitelson AA, Schepers J (2012) How deep does a remote sensor sense? Expression of chlorophyll content in a maize canopy. Remote Sens Environ 126:240–247

    Article  Google Scholar 

  • Clevers JPC, Kooistra L, Schaepman ME (2008) Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int J Appl Earth Obs Geoinform 10:388–397

    Article  Google Scholar 

  • Clevers JPC, Kooistra L, Schaepman ME (2010) Estimating canopy water content using hyperspectral remote sensing data. Int J Appl Earth Obs Geoinform 12:119–125

    Article  Google Scholar 

  • Dash J, Curran PJ (2007) Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv Space Res 39:100–104

    Article  CAS  Google Scholar 

  • Entcheva Campbell PK, Middleton EM, Corp LA, Kim MS (2008) Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Sci Total Environ 404:433–439

    Article  Google Scholar 

  • Evans RG, King BA (2010) Site-specific sprinkler irrigation in a limited water future. In: ASABE conference presentation, Phoenix, 5–8 Dec 2008, Paper no. IRR 10-8491

    Google Scholar 

  • Evans RG, King BA (2012) Site-specific sprinkler irrigation in a water-limited future. Trans ASABE 55(2):493–504

    Google Scholar 

  • Gao BC, Goetz AFH (1990) Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. J Geophys Res 95(D4):3549–3564

    Article  Google Scholar 

  • Gherboudj I, Magagi R, Berg AA, Toth B (2011) Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sens Environ 115:33–43

    Article  Google Scholar 

  • Gitelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282

    Article  CAS  PubMed  Google Scholar 

  • Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Gitelson AA, Vina A, Masek JG, Verma SB, Suyker AE (2008) Synoptic monitoring of gross primary productivity of maize using Landsat data. IEEE Geosci Remote Sens Lett 5(2):133–137

    Article  Google Scholar 

  • Guenther KP, Dahn HG, Luedeker W (1999) Laser-induced-fluorescence: a new method for “precision farming”. In: Bill R, Grenzdoerffer G, Schmidt F (eds) Sensorsysteme in precision farming, workshop, Universität Rostock, Rostock, 27/28 Sept 1999

    Google Scholar 

  • Guyot G (1998) Physics of the environment and climate. Wiley, New York

    Google Scholar 

  • Guyot G, Baret F, Major DJ (1988) High spectral resolution: determination of spectral shifts between the red and infrared. Int Arch Photogramm Remote Sens 11:750–760

    Google Scholar 

  • Hammes E (2005) Biophysical research to effects of fungi infections in wheat on processes of photosynthesis and possibilities of infection recording from a moving tractor (in German). Doctoral dissertation, University of Kiel, Kiel

    Google Scholar 

  • Heinzel V (2007) Retrieval of biophysical parameters from multi-sensoral remote sensing data assimilated into the crop growth model CERES-Wheat. Doctoral dissertation, University of Bonn, Bonn

    Google Scholar 

  • Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil JD (2010) Utilizing the VENμS red-edge bands for assessing LAI in crops. In: ISPRS Archives, Vol XXXVIII, Part 4-8-2-W9, Core spatial databases-updating, maintenance and services – from theory to practice, Haifa

    Google Scholar 

  • Homayouni S, Germain C, Lavialle O, Grenier G, Goutouly JP, Van Leeuwen C, Da Costa JP (2008) Abundance weighting for improved vegetation mapping in row crops: application to vineyard vigour monitoring. Can J Remote Sens 34(2):S228–S239

    Article  Google Scholar 

  • Irmak S, Haman DZ, Bastug R (2000) Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron J 92:1221–1227

    Article  Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as crop water stress indicator. Water Resour Res 17(4):1133–1138

    Article  Google Scholar 

  • Jackson RD, Kustas WP, Choudhury BJ (1988) A re-examination of the crop water stress index. Irrig Sci 9:309–317

    Article  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91

    Article  Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment, 2nd edn. Wiley, New York

    Google Scholar 

  • Jiao X, McNairn H, Shang J, Liu J (2010) The sensitivity of multi-frequency (X, C and L-band) radar backscatter signatures to bio-physical variables (LAI) over corn and soybean fields. In: International archives photogrammetry remote sensing XXXVIII, Part 7B, symposium, Vienna, 2010, pp 318–321

    Google Scholar 

  • Jones CL, Weckler PR, Maness NO, Stone ML, Jayasekara R (2004) Estimating water stress in plants using hyperspectral sensing. Paper no. 043065, ASAE, St. Joseph

    Google Scholar 

  • Kautsky H, Hirsch A (1931) New experiments regarding carbon assimilation (in German). Naturwissenschaften 19:964

    Article  CAS  Google Scholar 

  • Kühbauch W, Hawlitschka S (2003) Remote sensing – a future technology in precision farming. In: POLINSAR. Workshop on applications of SAR polarimetry and polarimetric inferometry, ESA-ESRIN, Frascati, 14–16 Jan 2003

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Liu L, Zhang Y, Wang J, Zhao C (2005) Detecting solar induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle. IEEE Trans Geosci Remote Sens 43(4):827–832

    Article  Google Scholar 

  • Liu J, Miller JR, Haboudane D, Pattey E, Hochheim K (2008) Crop fraction estimating from casi hyperspectral data using linear spectral unmixing and vegetation indices. Can J Remote Sens 34(1):S124–S138

    Article  Google Scholar 

  • Maier SW, Guenther KP, Luedeker W, Dahn HW (1999) A new method for remote sensing of vegetation stress. In: Proceedings of the ALPS 99, Meribel, 1999

    Google Scholar 

  • Mattia F, Le Thoan T, Picard G, Posa FI, D’Alessio A, Notarnicola C, Gatti AM, Rinaldi M, Satalino G, Pasquariello G (2003) Multitemporal C-band radar measurements on wheat fields. IEEE Trans Geosci Remote Sens 41(7):1551–1560

    Article  Google Scholar 

  • McNairn H, Shang J, Jiao X, Champagne C (2009) The contribution of ALOS PALSAR multipolarisation and polarimetric data to crop classification. IEEE Trans Geosci Remote Sens 47(12):3981–3992

    Article  Google Scholar 

  • Meron M, Tsipris J, Orlov V, Alchanitis V, Cohen Y (2010) Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis Agric 11:148–162

    Article  Google Scholar 

  • Mistele B, Gutser R, Schmidhalter U (2004). Validation of field-scaled spectral measurements of the nitrogen status in winter wheat. In: Precision Agriculture Center, University of Minnesota (ed) Remote sensing, seventh international conference on precision agriculture, Minneapolis, 25–28 July 2004

    Google Scholar 

  • Moeller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrowsky V, Sprintsin M, Cohen S (2007) Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot 58(4):827–838

    Article  CAS  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):744–766

    Article  Google Scholar 

  • Moshou D, Bravo C, Oberti R, Bodria L, Vougioukas S, Ramon H (2009) Intelligent autonomous system for the detection and treatment of fungal diseases in arable crops. In: van Henten EJ, Goense D, Lockhorst C (eds) Precision agriculture ´09. Wageningen Academic Publishers, Wageningen, pp 265–272

    Google Scholar 

  • Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas L, Ounis A (2004) A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91:186–197

    Article  Google Scholar 

  • Pacheco A, Bannari A, Staenz K, McNairn H (2008) Deriving percent crop cover over agriculture canopies using hyperspectral remote sensing. Can J Remote Sens 34(1):S110–S123

    Article  Google Scholar 

  • Payero JO, Irmak S (2006) Variable upper and lower crop water stress index baselines for corn and soybeans. Irrig Sci 25:21–32

    Article  Google Scholar 

  • Peng Y, Gitelson AA, Keydan G, Rundquist DC, Leavitt B, Verma SB, Suyker AE (2010) Remote estimation of gross primary production in maize. In: Proceedings of the 10th conference on precision agriculture, Denver, 18–21 July 2010

    Google Scholar 

  • Peng Y, Gitelson AA, Keydan G, Rundquist DC, Moses W (2011) Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content. Remote Sens Environ 115:978–989

    Article  Google Scholar 

  • Penuelas J, Filella I, Biel C, Serrano L, Save R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14:1887–1905

    Article  Google Scholar 

  • Pierce FJ, Chavez JL, Elliott TV, Matthews GR, Evans RG, Kim Y (2006) A remote-real-time continuous move irrigation control and monitoring system. In: Paper no. 062 162, 2006 ASABE annual international meeting, Portland, 2006

    Google Scholar 

  • Pottier E, Ferro-Famil L (2004) Analyse temps-frequence de milieux anisotropes a partir de donnees SAR polarimetrique. In: Journee “Imagerie Polarimetrique” GDR ISIS, GDR Ondes, Paris, 16–17 Mar 2004

    Google Scholar 

  • Raun WR, Solie JB, Johnson GV, Stone ML, Lukins EV, Thomason WE, Schepers JS (2001) In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J 93:131–138

    Article  Google Scholar 

  • Reusch S (1997) Development of an optical reflectance sensor for recording the nitrogen supply of agricultural field crops (in German). Doctoral dissertation, Department of Agricultural Systems Engineering, University of Kiel, Kiel. Forschungsbericht Agrartechnik, VDI-MEG 303

    Google Scholar 

  • Rosema A, Verhoef W, Schroote J, Snel JFH (1991) Simulating fluorescence light- canopy interaction in support of laser–induced fluorescence measurements. Remote Sens Environ 37:117–130

    Article  Google Scholar 

  • Sadler EJ, Evans R, Buchleiter G, King B, Camp C (2000) Venturing into precision agriculture. Irrig J 50:15–17

    Google Scholar 

  • Sadler EJ, Camp CR, Evans DE, Millen JA (2002) Corn canopy temperature measured with a moving infrared thermometer array. Trans Am Soc Agric Eng 45(3):581–591

    Google Scholar 

  • Schwartz JW, Piston D, DeFelice LJ (2006) Molecular microfluorometry: converting arbitrary fluorescence units into absolute molecular concentrations. Handb Exp Pharmacol 175:23–57

    Article  CAS  PubMed  Google Scholar 

  • Serrano L, Fillela I, Penuelas J (2000) Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 40:723–731

    Article  Google Scholar 

  • Shimoni B, Borghys D, Heremans R, Perneel C, Acheroy M (2009) Fusion of PolSAR and PolInSAR data for land cover classification. Int J Appl Earth Obs Geoinform 11:169–180

    Article  Google Scholar 

  • Sims DA, Gamon JA (2003) Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance. Remote Sens Environ 84:526–537

    Article  Google Scholar 

  • Sonnenschein R, Jarmer T, Vohland M, Werner W (2005) Spectral determination of plant water content of wheat canopies. In: Zagajewski B et al. (eds) Proceedings of the 4th EARSel. Workshop of imaging spectroscopy. New quality in environmental studies. Warsaw University, Warsaw, pp 727–737

    Google Scholar 

  • Steingiesser R, Kühbauch W (1998) Recording of fresh and dry biomass and estimation of fresh biomass from winter barley in various regions of Europe by an airborne radar-sensor (in German). J Agron Crop Sci 181(3):145–152

    Article  Google Scholar 

  • Sticksel E, Huber G, Liebler J, Schächtl J (2004). The effect of diurnal variations of canopy reflectance on the assessment of biomass formation in wheat. In: Precision Agriculture Center, University of Minnesota (ed) Remote sensing, seventh international conference on precision agriculture, Minneapolis, 25–28 July 2004

    Google Scholar 

  • Thiessen E (2002) Optical sensing techniques for site-specific application of farm chemicals (in German). Doctoral dissertation, University of Kiel, Kiel. Forschungsbericht Agrartechnik, VDI-MEG 399

    Google Scholar 

  • Ulaby FT, Dubois PC, van Zyl J (1996) Radar mapping of surface soil moisture. J Hydrol 184:57–84

    Article  CAS  Google Scholar 

  • Verhoef W (1984) Light scattering by leaves with application to canopy reflectance modelling. Remote Sens Environ 16:125–141

    Article  Google Scholar 

  • Yang CM, Su MR (2000) Analysis of spectral characteristics of rice canopy under water deficiency. In: Proceedings of the Asian conference on remote sensing 2000. Session agriculture and soil, Taipei, 4–8 December 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Heege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heege, H.J., Thiessen, E. (2013). Sensing of Crop Properties. In: Heege, H. (eds) Precision in Crop Farming. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6760-7_6

Download citation

Publish with us

Policies and ethics