Skip to main content

Plant Cyanogenic Glycosides

  • Living reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

  • 283 Accesses

Abstract

The cyanogenic glycosides (CGs) are glycosidic derivatives of α-hydroxynitriles. These molecules are distributed in three phyla of higher plants; the majority of such compounds were isolated and described in dicot plants, and highest occurrence characterizes the subclass Rosidae. Biosynthetic capacity of CGs seems to be an ancient property in plant kingdom. Their biogenetic precursors are amino acids (five proteinogenic and one non-proteinogenic); the molecules are accumulated in vacuoles. Decomposition of CGs produces sugars (mainly glucose), one organic molecule of aldehyde or ketone character, and HCN. Catabolism of CGs is performed by an enzyme system (ß-glucosidase + hydroxynitrile), but in intact tissues it is localized in a separate cell compartment. Consequence of a tissue damage (induced by chewing, crushing, or by temperature, frost) can be the contact of substrates (CGs) and decomposing enzymes and liberation of HCN.

The main biological function of CGs is a role in plant defense system against effects of distinct animals (attacks of insects or herbivorous animals). Interaction of protective plants and animals produced, however, specific mechanisms for separation of poisons or for blockage of this system.

Acute poisoning of animals and humans, originating from consumption of cyanogenic plants or food products, can induce rapid, drastic inhibition of respiration system in mitochondria, and consequences can be fatal. Continuous intake of plants with low CG (cyanide) levels can cause mainly specific damages of nervous system.

Control and reduction of CGs are essential challenges for feeding of animals or in food safety.

The following section is a review of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bacala R, Barthet V. Development of extraction and gas chromatography analytical methodology for cyanogenic glycosides in flaxseed (Linum usitatissimum). J AOAC Int. 2007;90:153–61.

    CAS  PubMed  Google Scholar 

  • Barnea A, Harborne JB, Pannell C. What parts of fleshy fruits contain secondary compounds toxic to birds and why? Biochem Syst Ecol. 1993;21:421–9.

    Article  CAS  Google Scholar 

  • Barthet V, Bacala R. Development of optimized extraction methodology for cyanogenic glycosides from flaxseed (Linum usitatissimum). J AOAC Int. 2010;93:478–84.

    CAS  PubMed  Google Scholar 

  • Berenguer-Navarro V, Giner-Galvan RM, Grané-Teruel N. Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column. J Agric Food Chem. 2002;50:6960–3.

    Article  CAS  PubMed  Google Scholar 

  • Borhidi A. Systematics of angiospermatophyta. (A zárvatermők fejlődéstörténeti rendszertana: in Hungarian). Budapest: Nemzeti Tankönyvkiadó; 1995.

    Google Scholar 

  • Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T. Cassava: the drought, war and famine crop in a changing world. Sustainability. 2010;2:3572–607.

    Article  Google Scholar 

  • Chillawar RG, Rathod OS. A note on cyanogenic plants of Marathwada. J Basic Sci. 2015;2:37–41.

    Google Scholar 

  • Da Nobrega JE, Riet-Correa F, Medeiros RMT, Dantas AFM. Poisoning by Sorghum halepense (Poaceae) in cattle in the Brazilian semiarid. Pesquisa Veterinaria Brasileira. 2006;26:201–4.

    Article  Google Scholar 

  • Dagiliené M, Martynaitis V, Krisciuniené V, Krikstolaityté S, Sackus A. Colorimetric cyanide chemosensor based on 1′,3,3′,4-tetrahydrospiro [chromene-2,2′-indole]. Chem Open. 2015;4:363–9.

    Google Scholar 

  • De Nicola GR, Leoni O, Malguti L, Bernardi R, Lazzeri L. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation. J Agric Food Chem. 2011;59:8065–9.

    Article  PubMed  Google Scholar 

  • Donald G, Barceloux MD. Cyanogenic foods (cassava, fruit kernels and cycad seeds). Dis Mon. 2009;55:336–52.

    Article  Google Scholar 

  • Ebinger JW, Bergman DL. Cyanogenesis in woody ornamentals. Proc Indiana Acad Sci. 1987;97:109–13.

    Google Scholar 

  • Engler HS, Spencer KC, Gilbert LE. Preventing cyanide release from leaves. Nature. 2000;406:144–5.

    Article  CAS  PubMed  Google Scholar 

  • Food Standards Australia New Zealand. Cyanogenic glycosides in cassava and bamboo shoots. A human health risk assessment. Tech Rep Ser. 2005;28:3–24.

    Google Scholar 

  • Ganjewala D, Kumar S, Devi A, Ambika K. Advances in cyanogenic glycosides biosynthesis and analyses in plants: a review. Acta Biol Szeged. 2010;54:1–14.

    Google Scholar 

  • Gebrehivot L, Beuselinck PR. Seasonal variations in hydrogen cyanide concentration of three lotus species. Agron J. 2001;93:603–8.

    Article  Google Scholar 

  • Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology and phenotypic plasticity. Annu Rev Plant Biol. 2014;65:155–85.

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Woodrow IE. Polymorphism in cyanogenic glycoside content and cyanogenic β-glycosidase activity in natural populations of Eucalyptus cladocalyx. Aust J Plant Physiol. 2000;27:693–9.

    CAS  Google Scholar 

  • Gleadow RM, Woodrow IE. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol. 2002;28:1301–13.

    Article  CAS  PubMed  Google Scholar 

  • Gleadow R, Haburjak J, Dunn JE, Conn ME. Frequency and distribution of cyanogenic glycosides in Eucalyptus L’Hérit. Phytochemistry. 2008;69:1870–4.

    Article  CAS  PubMed  Google Scholar 

  • Grüss A, Priymenko N. Cotoneaster sp. poisoning in a llama (Lama glama). J Vet Diagn Invest. 2009;21:247–9.

    Article  PubMed  Google Scholar 

  • Krech MJ, Fieldes MA. Analysis of the developmental regulation of the cyanogenic compounds in seedlings of two lines of Linum usitatissimum. Can J Bot. 2003;81:1029–38.

    Article  CAS  Google Scholar 

  • Lechtenberg M. Cyanogenesis in higher plants and animals. In: Encyclopedia of life sciences. Chichester: Wiley; 2011.

    Google Scholar 

  • Lieberei R. South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann Bot. 2007;100:1125–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • McMahon SJ, Arteca RN. Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant. 2000;109:180–7.

    Article  Google Scholar 

  • Møller BL. Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol. 2010;13:338–47.

    Article  PubMed  Google Scholar 

  • Nahrstedt A. Recent development in chemistry, distribution and biology of the cyanogenic glycosides. In: Hostettmann K, Lea PJ, editors. Biologically active natural products, Annual proceeding of the phytochemical society of Europe 27. Oxford: Clarendon; 1987. p. 213–33.

    Google Scholar 

  • Neilson EH, Goodger JQD, Woodrow IE. Novel aspects of cyanogenesis in Eucalyptus camphora subsp. humanea. Funct Plant Biol. 2006;33:487–96.

    Article  CAS  Google Scholar 

  • Neilson EH, Goodger JQD, Motawia MS, Bjarnholt N, Frisch T. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue types. Phytochemistry. 2011;72:2325–34.

    Article  CAS  PubMed  Google Scholar 

  • Osbourn AE. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell. 1996;8:1821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paplauskiené V, Sprainaitis A. Variability of cyanogenic glucoside content in white clover plants. Biologija. 2003;1:85–7.

    Google Scholar 

  • Pensiriwan S, Guharat S, Wananukul W. A mass cyanide poisoning from pickling bamboo shoots. Clin Toxicol. 2011;49:834–9.

    Article  Google Scholar 

  • Perrut-Lima P, Mühlen GS, Carvalho CRL. Cyanogenic glycoside content of Manihot esculenta subsp. flabellifolia in south-central Rondonia, Brazil, in the center of domestication of M. esculenta subsp. esculenta. Genet Resou Crop Evol. 2014;61:1035–8.

    Article  CAS  Google Scholar 

  • Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011;62:549–66.

    Article  CAS  PubMed  Google Scholar 

  • Russo R, Reggiani R. Variation in the content of cyanogenic glycosides in flaxseed meal from twenty-one varieties. Food Nutr Sci. 2014;5:1456–62.

    Article  CAS  Google Scholar 

  • Sakalem ME, Negri G, Tabach R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Braz J Pharmacognosy. 2012;22:1219–32.

    CAS  Google Scholar 

  • Salkowski AA, Penney DG. Cyanide poisoning in animals and humans A review. Vet Hum Toxicol. 1994;36:455–466.

    CAS  PubMed  Google Scholar 

  • Santos MG, Carvalho CDM, Kelecom A, da Costa Ribeiro MLR, de Freitas CVC, Da Costa LM, Fernandes LV. Cianogenese em esporófitos de pteridófitas avaliada pelo teste do ácido picrico. Acta Bot Bras. 2005;19:783–8.

    Article  Google Scholar 

  • Schlichta JG, Glauser G, Benrey B. Variation in cyanogenic glycosides across population of wild lima bean (Phaseolus lunatus) has no apparent effect on bruchid beetle performance. J Chem Ecol. 2014;40:468–75.

    Article  Google Scholar 

  • Seigler DS. Plants of Oklahama and Texas capable of producing cyanogenic compounds. Proc Okla Acad Sci. 1976;56:95–100.

    Google Scholar 

  • Siegien I, Adamczuk A, Wroblewska K. Light affects in vitro organogenesis of Linum usitatissimum L. and its cyanogenic potential. Acta Physiol Plant. 2013;35:781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Blanco B, Górniak SL. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats. Exp Toxicol Pathol. 2010;4:361–6.

    Article  Google Scholar 

  • Sumathi BR, Harini H. Cyanogenic Forage poisoning in Cattle herd and its clinical management. Intas Polivet. 2011;12:217–8.

    Google Scholar 

  • Surleva A, Zaharia M, Ion L, Gradinaru RV, Drochioiu G, Mangalagiu I. Ninhydrin-based spectrophotometric assays of trace cyanide. Acta Chem Iasi. 2013;21:57–70.

    CAS  Google Scholar 

  • Tegzes JH, Puschner B, Melton LA. Cyanide toxicosis in goats after ingestion of California Holly (Heteromeles arbutifolia). J Vet Diagn Invest. 2003;15:478–80.

    Article  PubMed  Google Scholar 

  • Thomsen K, Brimer L. Cyanogenic constituents in woody plants in natural lowland rain forest in Costa Rica. Bot J Linn Soc. 1997;124:273–394.

    Article  Google Scholar 

  • Tivana LD, Francisco JDC, Zelder F, Bergenstahl B, Dejmek P. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food Chem. 2014;158:20–7.

    Article  CAS  PubMed  Google Scholar 

  • Ubalua AO. Cyanogenic glycosides and the fate of cyanide in soil. Aust J Crop Sci. 2010;4:223–37.

    CAS  Google Scholar 

  • Vetter J. Plant cyanogenic glycosides. Toxicon. 2000;38:11–36.

    Article  CAS  PubMed  Google Scholar 

  • Zöllner H, Giebelmann R. Cyanogene Glykoside in Lebensmitteln – Kulturhistorische Betrachtungen. Dtsch Lebensmitt Rundsch. 2007;103:71–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Vetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vetter, J. (2016). Plant Cyanogenic Glycosides. In: Gopalakrishnakone, P., Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6728-7_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6728-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics