Skip to main content

Biosecurity and Toxins

  • Living reference work entry
  • First Online:
Toxinology
  • 243 Accesses

Abstract

Biological toxins are highly diverse and produced in nature by a wide variety of organisms. A number of key features favor the potential threat of these biotoxins as bioterror agents, including their high potency, the relatively long latency period before symptoms are manifested, the difficulty in detecting or diagnosing their presence and identity, and their relative ease in production and stability in the environment. All of these features also create major challenges in developing tools and reagents to combat toxin-mediated diseases. So far, there have been a limited number of toxins that have drawn attention for potential use as bioterror agents, but there are many more naturally occurring toxins that have been isolated, purified, and characterized, as well as cloned and modified to make different recombinant variants. Current treatments for toxin exposure are limited to vaccination or passive immunization with antibodies; however, there are no postexposure therapies available after symptoms have manifested. A vigilant and robust biotoxin research community must be mobilized to not only better characterize the existing biotoxins but also to anticipate new variants or entirely new biotoxins that might arise and to develop appropriate antitoxin countermeasures. In addition, a definitive roadmap must also be formulated for safe, documented, and controlled handling of biotoxins during basic research and during development of toxin-based therapeutics for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramson SN, Radic Z, Manker D, Faulkner DJ, Taylor P. Onchidal: a naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action. Mol Pharmacol. 1989;36(3):349–54.

    CAS  PubMed  Google Scholar 

  • Aktories K, editor. Botulinum neurotoxins. Heidelberg: Springer; 2013.

    Google Scholar 

  • Alouf JE, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 3rd ed. San Diego: Elsevier/Academic; 2006.

    Google Scholar 

  • Anderson PD. Bioterrorism: toxins as weapons. J Pharm Pract. 2012;25(2):121–9.

    Article  PubMed  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285(8):1059–70.

    Article  CAS  PubMed  Google Scholar 

  • Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354(5):462–71.

    Article  CAS  PubMed  Google Scholar 

  • Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis. 2014;209(2):183-91.

    Google Scholar 

  • Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16(3):497–516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bigalke H, Rummel A. Medical aspects of toxin weapons. Toxicology. 2005;214(3):210–20.

    Article  CAS  PubMed  Google Scholar 

  • Binder P, Attre O, Boutin JP, Cavallo JD, Debord T, Jouan A, et al. Medical management of biological warfare and bioterrorism: place of the immunoprevention and the immunotherapy. Comp Immunol Microbiol Infect Dis. 2003;26(5–6):401–21.

    Article  PubMed  Google Scholar 

  • Blunden G. Biologically active compounds from marine organisms. Phytother Res. 2001;15(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583(11):1736–43.

    Article  CAS  PubMed  Google Scholar 

  • CDC. National Center for Emerging and Zoonotic Infectious Disease: national botulism surveillance summaries – 2001–2011. [Summary Report] 2011 [updated 06/25/2013; cited 08/08/2013]; http://www.cdc.gov/nationalsurveillance/botulism_surveillance.html (2011).

  • Crenshaw M. Explaining terrorism: causes, processes and consequences (political violence). 1st ed. Wilkinson P, Rapoport D, editors. New York: Routledge/Taylor & Francis Group; 2011.

    Google Scholar 

  • Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod. 2005;68(10):1556–75.

    Article  CAS  PubMed  Google Scholar 

  • De Castro C, Holst O, Lanzetta R, Parrilli M, Molinaro A. Bacterial lipopolysaccharides in plant and mammalian innate immunity. Protein Pept Lett. 2012;19(10):1040–4.

    Article  PubMed  Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev. 2013;37(1):23–43.

    Article  CAS  PubMed  Google Scholar 

  • Dover N, Barash JR, Hill KK, Xie G, Arnon SS. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis. 2014;209(2):192-202.

    Google Scholar 

  • Edupuganti OP, Ovsepian SV, Wang J, Zurawski TH, Schmidt JJ, Smith L, et al. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J. 2012;279(14):2555–67.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P. Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Mol Divers. 2006;10(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  • Ganesan K, Raza SK, Vijayaraghavan R. Chemical warfare agents. J Pharm Bioallied Sci. 2010;2(3):166–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallen HE, Luo H, Scott-Craig JS, Walton JD. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci U S A. 2007;104(48):19097–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henghold 2nd WB. Other biologic toxin bioweapons: ricin, staphylococcal enterotoxin B, and trichothecene mycotoxins. Dermatol Clin. 2004;22(3):257–62, v.

    Article  CAS  PubMed  Google Scholar 

  • Hill SE, Iqbal R, Cadiz CL, Le J. Foodborne botulism treated with heptavalent botulism antitoxin. Ann Pharmacother. 2013;47(2):e12.

    Article  PubMed  Google Scholar 

  • Ho M, Chang LH, Pires-Alves M, Thyagarajan B, Bloom JE, Gu Z, et al. Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting. Protein Eng Des Sel. 2011;24(3):247–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong H, Demangel C, Pidot SJ, Leadlay PF, Stinear T. Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep. 2008;25(3):447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu WG, Yin J, Chau D, Negrych LM, Cherwonogrodzky JW. Humanization and characterization of an anti-ricin neutralization monoclonal antibody. PLoS One. 2012;7(9):e45595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang DF, Noguchi T. Tetrodotoxin poisoning. Adv Food Nutr Res. 2007;52:141–236.

    Article  CAS  PubMed  Google Scholar 

  • Joseph R, Pahari S, Hodgson WC, Kini RM. Hypotensive agents from snake venoms. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4(4):437–59.

    Article  CAS  PubMed  Google Scholar 

  • Katona P. Botulinum toxin: therapeutic agent to cosmetic enhancement to lethal biothreat. Anaerobe. 2012;18(2):240–3.

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol. 2012;2:37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: Taylor & Francis Group/CRC Press; 2010.

    Google Scholar 

  • Madsen JM. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents. Clin Lab Med. 2001;21(3):593–605.

    CAS  PubMed  Google Scholar 

  • Makarovsky I, Markel G, Hoffman A, Schein O, Brosh-Nissimov T, Tashma Z, et al. Strychnine–a killer from the past. Isr Med Assoc J. 2008;10(2):142–5.

    PubMed  Google Scholar 

  • McCleary RJ, Kini RM. Snake bites and hemostasis/thrombosis. Thromb Res. 2013;132:642–6.

    Article  CAS  PubMed  Google Scholar 

  • Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olivera BM, Teichert RW. Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv. 2007;7(5):251–60.

    Article  CAS  PubMed  Google Scholar 

  • Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med. 2007;58:221–37.

    Article  CAS  PubMed  Google Scholar 

  • Paterson RR. Fungi and fungal toxins as weapons. Mycol Res. 2006;110(Pt 9):1003–10.

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR. Botulinum neurotoxins: more and more diverse and fascinating toxic proteins. J Infect Dis. 2014;209(2):168-9.

    Google Scholar 

  • Relman DA. Inconvenient truths in the pursuit of scientific knowledge and public health. J Infect Dis. 2014;209(2):170-2.

    Google Scholar 

  • Salem H. Issues in chemical and biological terrorism. Int J Toxicol. 2003;22(6):465–71.

    Article  PubMed  Google Scholar 

  • Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011;65:71–90.

    Article  CAS  PubMed  Google Scholar 

  • Schep LJ, Temple WA, Butt GA, Beasley MD. Ricin as a weapon of mass terror–separating fact from fiction. Environ Int. 2009;35(8):1267–71.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Ohishi K, Fukunaga H, Ro JS, Nambara T. Structure-activity relationship of bufotoxins and related compounds for the inhibition of Na+, K+-adenosine triphosphatase. J Pharmacobiodyn. 1985;8(12):1054–9.

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC. alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu Rev Neurosci. 2001;24:933–62.

    Article  CAS  PubMed  Google Scholar 

  • Szinicz L. History of chemical and biological warfare agents. Toxicology. 2005;214(3):167–81.

    Article  CAS  PubMed  Google Scholar 

  • US Code of Law. Title: 18: Crimes and criminal procedure (Part I – Crimes). Chapter 10: Biological weapons. Sect. 178: Definitions (2012).

    Google Scholar 

  • Wilson BA. Global biosecurity in a complex, dynamic world. Complexity. 2008;14(1):71–88.

    Article  Google Scholar 

  • Wilson BA, Ho M. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins. Future Microbiol. 2010;5(8):1185–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda A. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wilson, B.A., Ho, M. (2014). Biosecurity and Toxins. In: Gopalakrishnakone, P. (eds) Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6645-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6645-7_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6645-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics