Skip to main content

NASA’s Hyperspectral Infrared Imager (HyspIRI)

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

NASA’s Hyperspectral and Infrared Imager (HyspIRI) mission is one of the missions recommended in the National Research Council Earth Science Decadal Survey. HyspIRI will fly two instruments: a hyperspectral visible to short wave infrared imaging spectrometer, and a multispectral thermal infrared (TIR) imager. In this study we discuss the expected performance and use of the TIR instrument. The TIR instrument will have eight spectral channels, seven of the channels are between 7 and 12 μm, with one additional channel at 4 μm. The TIR instrument will have a swath width of 600 km, and pixel size of 60 m. HyspIRI TIR will provide two visits every 5 days (one day and one night) at the equator, and more frequently at higher latitudes. The TIR instrument will always be on and full resolution (60 m) data will be downlinked for the entire land surface including the coastal oceans (shallower than 50 m depth). Data over the deeper ocean will also be downlinked but at a reduced spatial resolution of 1 km. In response to the Decadal Survey, HyspIRI has been designed to answer important science questions in the areas of coastal, ocean and inland aquatic environments; wildfires; volcanoes; ecosystem function and diversity; land surface composition and change; and human health and urbanization. NASA’s Distributed Active Archive Center will archive and distribute Level 0 to Level 2 products. In addition a direct broadcast capability will allow users to capture and process a subset of HyspIRI data in near real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baldridge A, Hook S, Grove C et al (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113:711–715

    Article  Google Scholar 

  • Bianchi R, Marino C, Pignatti S (1994) Airborne hyperspectral remote sensing in Italy. SPIE 2318:29–37

    Article  Google Scholar 

  • Briess K, Barwald W, Gerlich T, Jahn H, Lura F, Studemund H (2000) The DLR small satellite mission BIRD. Acta Astronaut 46:111–120

    Article  Google Scholar 

  • Christensen P, Bandfield J, Hamilton V et al (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res Planet 105:9735–9739

    Article  Google Scholar 

  • Christensen P, Bandfield J, Bell J, Gorelick N, Hamilton V, Ivanov A, Jakosky B, Kieffer H, Lane M, Malin M, Mehal G (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300:2056–2061

    Article  Google Scholar 

  • Dennison P, Charoensiri K, Roberts D, Peterson S, Green R (2006) Wildfire temperature and land cover modeling using hyperspectral data. Remote Sens Environ 100:212–222

    Article  Google Scholar 

  • GEO (2007) GEO Inland and nearshore coastal water quality remote sensing workshop, Geneva. http://www.earthobservations.org/meeting/20070327_29_water_quality_workshop_report.pdf

  • Hackwell J, Warren D, Bongiovi R, Hansel S, Hayhurst T, Mabry D, Sivjee M, Skinner J (1996) LWIR/MWIR imaging hyperspectral sensor for airborne and ground based remote sensing. Proc SPIE 2819:102–107

    Article  Google Scholar 

  • Hall J, Gutierrez D, Tratt D, Warren D, Young S, Ramsey M (2011) Mineral and gas identification using a high performance thermal imaging spectrometer. Earth Science Technology Forum 2011, NASA, Pasadena, http://esto.nasa.gov/conferences/estf2011/index.html

  • Hook S, Gavell A, Green A (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens Environ 42:123–135

    Article  Google Scholar 

  • Hook S, Myers J, Thome K, Fitzgerald M, Kahle A (2001) The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76:93–102

    Article  Google Scholar 

  • Hulley G, Hook S (2011) Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans Geosci Remote Sens 49:1304–1315

    Article  Google Scholar 

  • HyspIRI Group (2009) NASA 2008 HyspIRI Whitepaper and workshop report. JPL Publication 09-19. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • HyTES (2011) http://airbornescience.jpl.nasa.gov/hytes/

  • Irons J, Masek J (2006) Requirements for a Landsat Data Continuity Mission. Photogramm Eng Remote Sens 72:1102–1108

    Google Scholar 

  • Jhabvala M, Reuter D, Choi K et al (2009) QWIP-based thermal infrared sensor for the Landsat Data Continuity Mission. Infrared Phys Technol 52:424–429

    Article  Google Scholar 

  • Kahle A, Rowan L (1980) Evaluation of multispectral middle infrared images for lithologic mapping in the East Tintic Mountains, Utah. Geology 8:234–239

    Article  Google Scholar 

  • Kirkland L, Herr K, Keirn E et al (2002) First use of an airborne hyperspectral scanner for compositional mapping. Remote Sens Environ 80:447–459

    Article  Google Scholar 

  • Matsunaga T, Yamamoto S, Kato S et al (2011) Simulation of operation of future Japanese spaceborne hyperspectral imager: HISUI. Proc SPIE. doi:10.1117/12.898376

    Google Scholar 

  • NRC (2007) Earth science and applications from space: national imperatives for the next decade and beyond. Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future. National Academies Press. Referred to as the Decadal Survey or NRC 2007, 456pp

    Google Scholar 

  • Ormsby J (1982) The use of Landsat-3 Thermal data to help differentiate land covers. Remote Sens Environ 12:97–105

    Article  Google Scholar 

  • Pierce L, Running S, Riggs G (1990) Remote detection of canopy water-stress in coniferous forests using the NS001 thematic mapper simulator and the thermal infrared multispectral scanner. Photogramm Eng Remote Sens 56:579–586

    Google Scholar 

  • Prisma (2011) http://www.asi.it/en/activity/earth_observation/prisma

  • Realmuto V, Hook S, Foote M, et al. (2011) HyspIRI high-temperature saturation study. JPL Publication 11-2. Jet Propulsion Laboratory, Pasadena, 51pp

    Google Scholar 

  • Stuffler T, Kaufmann C, Hofer S et al (2007) The EnMAP hyperspectral imager – an advanced optical payload for future applications in Earth observation programs. Acta Astronaut 61:115–120

    Article  Google Scholar 

  • Szymanski J, Weber P (2005) Multispectral Thermal Imager: mission and applications overview. IEEE Trans Geosci Remote Sens 43:1943–1949

    Article  Google Scholar 

  • UNIS (2004) UN report says world urban population of 3 billion today expected to reach 5 billion by 2030. URL: http://www.unis.unvienna.org/unis/pressrels/2004/pop899.html. United Nations Information Service, Vienna

  • Vincent R (1972) Rock-type discrimination from ratioed infrared scanner images of Pisgah Crater, California. Science 175:986–988

    Article  Google Scholar 

  • Wright R, Garbeil H, Harris A (2008) Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: a method for near-real-time volcanic hazard assessment. Geophys Res Lett 35, L19307

    Article  Google Scholar 

  • Yamaguchi Y, Kahle A, Tsu H, Kawakami T, Pniel M (1998) Overview of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36:1062–1071

    Article  Google Scholar 

  • URL1: http://hyspiri.jpl.nasa.gov/documents

Download references

Acknowledgment

Work by Abrams and Hook was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Abrams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abrams, M.J., Hook, S.J. (2013). NASA’s Hyperspectral Infrared Imager (HyspIRI). In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_6

Download citation

Publish with us

Policies and ethics