Skip to main content

Thermal Analysis of Volcanoes Based on 10 Years of ASTER Data on Mt. Etna

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

The EOS-1 Terra ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) has acquired about 200 images (100 of them sufficiently cloud-free to be used) over Mt. Etna since 1999. This chapter shows the results from the analysis of 10 years Mt Etna activity using thermal infrared (TIR) high spatial resolution data by a semi-automatic procedure that extracts radiance values of the summit area with the goal of detecting variation related to eruptive events. Night time data showed a good correlation with the main eruptive events that occurred both in the summit and in the flank areas. A comparison of the variance of maximum ASTER TIR radiance with variance of the maximum AVHRR TIR radiance (Advanced Very High Resolution Radiometer) for the same area confirms good correlation in terms of trend and values between the two data sets. Finally this study emphasizes the importance of high spatial resolution TIR data during background monitoring to detect changes in the thermal emission that may be related to an impending eruption and the need to further improve the spatial resolution in the TIR channels to better separate the thermal active areas in volcanic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476. doi:10.1007/s00445-003-0274-1

    Article  Google Scholar 

  • Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geol Soc Am Spec Pap 396, pp 187–205. doi:10.1130/0-8137-2396-5.189

  • Behncke B, Calvari S, Giammanco S, Neri M, Pinkerton H (2008) Pyroclastic density currents resulting from interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mount Etna. Italy Bull Volcanol 70:1249–1268. doi:10.1007/s00445-008-0200-7

    Article  Google Scholar 

  • Branca S, Del Carlo P (2004) Eruptions of Mt. Etna during the past 3,200 years: a revised compilation integrating the historical and stratigraphic records. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory, Geophysical monograph series 143. AGU, Washington, DC, pp 1–28, 369pp

    Chapter  Google Scholar 

  • Branca S, Coltelli M, Groppelli G (2004) Geological evolution of Etna volcano. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory, Geophysical monograph series 143. AGU, Washington, DC, pp 49–63

    Chapter  Google Scholar 

  • Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95(B2):1255–1270

    Article  Google Scholar 

  • Dean KG, Dehn J, Papp KR, Smith S, Izbekov P, Peterson R, Kearney C, Steffke A (2004) Integrated satellite observation of the 2001 eruption of Mt. Cleveland, Alaska. J Volcanol Geotherm Res 135:51–72

    Article  Google Scholar 

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Article  Google Scholar 

  • Flynn LP, Mouginis-Mark PJ, Horton KA (1994) Distribution of thermal areas on active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991. Bull Volcanol 56:284–296

    Article  Google Scholar 

  • Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat 7 ETM+. Remote Sens Environ 78:180–193

    Article  Google Scholar 

  • Flynn LP, Wright R, Garbeil H, Harris AJL, Pilger E (2002) A global thermal alert using MODIS: initial results from 2000–2001. Adv Environ Monit Model 1:37–69

    Google Scholar 

  • Francis PW, Rothery DA (1987) Using the Landsat thematic mapper to detect and monitor active volcanoes: an example from Lascar Volcano, northern Chile. Geology 15:614–617

    Article  Google Scholar 

  • Gawarecki SJ, Lyon RJP, Nordberg W (1965) Infrared spectral returns and imagery of the Earth from space and their application to geological problems: scientific experiments for manned orbital flight. Am Astronaut Soc Sci Technol Ser 4:13–133

    Google Scholar 

  • Gouhier M, Harris A, Calvari S, Labazuy P, Guéhenneux Y, Donnadieu F, Valade S (2012) Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bull Volcanol 74(4):787

    Article  Google Scholar 

  • Harris A, Ripepe M (2007) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112, B03205. doi:10.1029/2006JB004393

    Article  Google Scholar 

  • Harris AJL, Blake S, Rothery DA, Stevens NF (1997) A chronology of the 1991 to 1993 Etna eruption using AVHRR data: implications for real time thermal volcano monitoring. J Geophys Res 102:7985–8003

    Article  Google Scholar 

  • Harris AJL, Wright R, Flynn LP (1999) Remote monitoring of Mount Erebus Volcano, Antarctica, using polar orbiters: progress and prospects. Int J Remote Sens 20(15–16):3051–3071

    Article  Google Scholar 

  • Harris AJL et al (2001) Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawai’I, using GOES satellite data. Int J Remote Sens 22(6):945–967

    Article  Google Scholar 

  • Kaneko T, Wooster MJ (2005) Satellite thermal analysis of the 1986 Izu-Oshima lava flows. J Volcanol Geotherm Res 148:355–371

    Article  Google Scholar 

  • Lombardo V, Buongiorno MF (2003) Temperature distribution analysis of July 2001 Mt. Etna eruption observed by the airborne hyperspectral sensor MIVIS. Ann Geophys 46(6)

    Google Scholar 

  • Lombardo V, Buongiorno MF (2006) Lava flow thermal analysis using three infrared bands of remote-sensing imagery: a study case from Mount Etna 2001 eruption. Remote Sens Environ 101(2):141–149

    Article  Google Scholar 

  • Lombardo V, Buongiorno MF, Amici S (2006) Characterization of volcanic thermal anomalies by means of sub-pixel temperature distribution analysis. Bull Volcanol 68:641–651

    Article  Google Scholar 

  • Neri M, Acocella V, Behncke B, Giammanco S, Mazzarini F, Rust D (2011) Structural analysis of the eruptive fissures at Mount Etna (Italy). Ann Geophys 54(5):464–479. doi:10.4401/ag-5332

    Google Scholar 

  • NRC Committee on Earth Science and Applications from Space (2007) Earth science and applications from space: national imperatives for the next decade and beyond. The National Academies Press of the National Research Council (NRC), Washington, DC, 428pp

    Google Scholar 

  • Oppenheimer C (1993) Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophys Res Lett 20:431–434

    Article  Google Scholar 

  • Oppenheimer C, Francis PW (1997) Remote sensing of heat, lava and fumarole emissions from Efta’ Ale Volcano, Ethiopia. Int J Remote Sens 18:1661–1692

    Article  Google Scholar 

  • Oppenheimer C, Yirgu G (2002) Thermal imaging of an active lava lake: Erta ’Ale volcano, Ethiopia. Int J Remote Sens 23:4777–4782

    Article  Google Scholar 

  • Oppenheimer C, Francis PW, Rothery DA, Carlton RWT, Glaze LS (1993a) Infrared image analysis of volcanic thermal features: Lascar Volcano, Chile 1984–1992. J Geophys Res 98:4269–4286

    Article  Google Scholar 

  • Oppenheimer C, Rothery DA, Francis PW (1993b) Thermal distribution at fumarole fields: implications for infrared remote sensing of active volcanoes. J Volcanol Geotherm Res 55:97–115

    Article  Google Scholar 

  • Pergola N, Tramutoli V, Marchese F (2004) Automated detection of thermal features of active volcanoes by means of Infrared AVHRR records. Remote Sens Environ 93:311–327

    Article  Google Scholar 

  • Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135(1–2):13–28

    Article  Google Scholar 

  • Pieri D, Abrams M (2005) ASTER observations of thermal precursors to the April 2003 eruption of Chikurachki Volcano, Kurile Islands, Russia. Remote Sens Environ 99:84–94

    Article  Google Scholar 

  • Pieri DC, Buongiorno MF (1995) Landsat TM observations of Mt. Etna summit crater radiance increases before the 1991–1993 eruption: implications for ASTER observations. EOS Trans Am Geophys Union 1995 Fall Meeting, 76, 46, Nov 7/Supplement, F135

    Google Scholar 

  • Pieri D, Glaze LS, Abrams MJ (1990) Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 18:1018–1022

    Article  Google Scholar 

  • Ramsey MS, Dehn J (2004) Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR. J Volcanol Geotherm Res 135(1–2):127–146

    Article  Google Scholar 

  • Realmuto V, Abrams M, Buongiorno MF, Pieri D (1994) The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: a case study from Mount Etna, Sicily, July 29, 1986. J Geophys Res 99(B1):481–488. doi:10.1029/93JB02062

    Article  Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7993–8008

    Article  Google Scholar 

  • Simkin T, Kreuger AF (1977) Skylab 4 observation of volcanoes: Part B – summit eruption of Fernandina Caldera, Galapagos Islands, Ecuador. Skylab Explores the Earth, NASA Spec Publ 380, pp 171–172

    Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years, 2nd edn. Geoscience Press, Tucson, 368pp

    Google Scholar 

  • Solomon SC, Baker VR, Bloxham J, Booth J, Donnellan A, Elachi C, Evans D, Rignot E, Burbank D, Chao BF, Chave A, Gillespie A, Herring T, Jeanloz R, LaBrecque J, Minster B, Pitman WC III, Simons M, Turcotte DL, Zoback ML (2003) Plan for living on a restless planet sets NASA’s solid earth agenda. EOS Trans Am Geophys Union 84(45):485–491

    Article  Google Scholar 

  • Vaughan RG, Hook SJ (2006) Using satellite data to characterize the temporal thermal behavior of an active volcano: Mount St. Helens, WA. Geophys Res Lett 33, L20303

    Article  Google Scholar 

  • Vaughan RG, Hook SJ, Ramsey MS, Realmuto VJ, Schneider DJ (2005) Monitoring eruptive activity at Mount St. Helens with TIR image data. Geophys Res Lett 32(19)

    Google Scholar 

  • Vaughan RG, Abrams MJ, Hook SJ, Pieri DC (2007) Satellite observations of new volcanic island in Tonga. EOS 88(4):37–41

    Article  Google Scholar 

  • Wooster MJ, Rothery DA (1997) Thermal monitoring of Lascar Volcano, Chile using infrared data from the along track scanning radiometer, a 1992–1995 time series. Bull Volcanol 58:566–579

    Article  Google Scholar 

  • Wooster MJ, Rothery DA (2000) A review of volcano surveillance applications using the ATSR instrument series. Adv Environ Monit Model 1(1):3–35

    Google Scholar 

  • Wright R, Flynn LP (2003) On the retrieval of lava flow surface temperatures from infrared satellite data. Geology 31:893–896

    Article  Google Scholar 

  • Wright R, Rothery DA, Blake S, Harris AJL, Pieri DC (1999) Simulating the response of the lEOS Terra ASTER sensor to high temperature volcanic targets. Geophys Res Lett 26:1773–1776

    Article  Google Scholar 

  • Wright R, Rothery DA, Blake S, Pieri DC (2000) Improved remote sensing estimates of lava flow cooling: a case study of the 1991 to 1993 Mount Etna eruption. J Geophys Res (Solid Earth) 105:23681–23694

    Article  Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36:1062–1071

    Article  Google Scholar 

  • URL1: http://www.volcano.si.edu

  • URL2: http://vulcani.ingv.it/en/etna.html

  • URL3: http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html

Download references

Acknowledgments

The authors would like to thank US and Japanese colleagues of the ASTER Joint Science Team, the NASA Land Processes Distributed Active Archive Center in Sioux Falls, South Dakota (USA) and the Earth Remote Sensing Data Analysis Center (ERSDAC) in Tokyo (Japan) for cooperation in obtaining and analyzing the ASTER data used for this study, as well as the Japanese Ministry of Economy, Trade and Industry (METI) for its support of the ASTER mission. This work was carried out, in part, at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology under contract to the Science Mission Directorate of NASA. Moreover the authors would like to thank Marco Neri and Boris Behncke working at INGV Mt. Etna Observatory who have provided the Mt. Etna eruption history and maps and Massimo Musacchio working at INGV in Rome for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fabrizia Buongiorno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buongiorno, M.F., Pieri, D., Silvestri, M. (2013). Thermal Analysis of Volcanoes Based on 10 Years of ASTER Data on Mt. Etna. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_20

Download citation

Publish with us

Policies and ethics