Skip to main content

Thermal Remote Sensing of Sea Surface Temperature

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

Sea surface temperature has been an important application of remote sensing from space for three decades. This chapter first describes well-established methods that have delivered valuable routine observations of sea surface temperature for meteorology and oceanography. Increasingly demanding requirements, often related to climate science, have highlighted some limitations of these approaches. Practitioners have had to revisit techniques of estimation, of characterising uncertainty, and of validating observations – and even to reconsider the meaning(s) of “sea surface temperature”. The current understanding of these issues is reviewed, drawing attention to ongoing questions. Lastly, the prospect for thermal remote sensing of sea surface temperature over coming years is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anding D, Kauth R (1970) Estimation of sea surface temperature from space. Remote Sens Environ 1(4):217–220. doi:10.1016/S0034-4257(70)80002-5

    Article  Google Scholar 

  • Barton IJ (1995) Satellite-derived sea surface temperatures: current status. J Geophys Res 100:8777–8790

    Article  Google Scholar 

  • Barton IJ (2011) Improving satellite-derived sea surface temperature accuracies using water vapor profile data. J Atmos Ocean Technol 28(1):85–93. doi:10.1175/2010JTECHA1502.1

    Article  Google Scholar 

  • Castro SL, Wick GA, Minnett PJ, Jessup AT, Emery WJ (2010) The impact of measurement uncertainty and spatial variability on the accuracy of skin and subsurface regression-based sea surface temperature algorithms. Remote Sens Environ 114(11):2666–2678. doi:10.1016/j.rse.2010.06.003

    Article  Google Scholar 

  • Castro SL, Wick GA, Emery WJ (2012) Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite derived reference products. J Geophys Res 117:C02029. doi:10.1029/2011JC007472

    Article  Google Scholar 

  • Chelton DB, Esbensen SK, Schlax G et al (2001) Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J Climate 14(7):1479–1498. doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2

    Article  Google Scholar 

  • Clayson CA, Weitlich D (2007) Variability of tropical diurnal sea surface temperature. J Climate 20(2):334–352. doi:10.1175/JCLI3999.1

    Article  Google Scholar 

  • Dash P, Ignatov A, Martin M et al (2012) Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons-Part 2: Near real time web-based level 4 SST quality monitor (L4-SQUAM). Deep Sea Res Part II Top Stud Oceanogr 77–80(Special Issue):31–43. doi:10.1016/j.dsr2.2012.04.002

    Article  Google Scholar 

  • Deschamps PY, Phulpin T (1980) Atmospheric corrections of infrared measurements of sea surface temperature using 3.7 μm, 11 μm and 12 μm. Bound Layer Meteorol 13:131–143

    Article  Google Scholar 

  • Donlon CJ, Casey KS et al (2009) The GODAE high resolution sea surface temperature pilot project. Oceanography 22(3):34–45

    Article  Google Scholar 

  • Donlon C, et al (2010) Successes and challenges for the modern sea surface temperature observing system. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, 21–25 Sept 2009, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.24

    Google Scholar 

  • Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens Environ 116:140–158. doi:10.1016/j.rse.2010.10.017

    Article  Google Scholar 

  • Embury O, Merchant CJ, Filipiak MJ (2012a) A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: basis in radiative transfer. Remote Sens Environ 116:32–46. doi:10.1016/j.rse.2010.10.016

    Article  Google Scholar 

  • Embury O, Merchant CJ, Corlett GK (2012b) A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: initial validation, accounting for skin and diurnal variability. Remote Sens Environ 116:62–78. doi:10.1016/j.rse.2011.02.028

    Article  Google Scholar 

  • Emery WJ, Yu YY, Wick GA (1994) Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J Geophys Res 99(C3):5219–5236. doi:10.1029/93JC03215

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB, Young GS (1996) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101:1295–1308

    Article  Google Scholar 

  • Freeland H, et al (2010) Argo – a decade of progress. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, Italy, 21–25 Sept 2009, ESA Publication WPP-306, doi: 10.5270/OceanObs09.cwp.32

    Google Scholar 

  • GCOS [Global Climate Observing System] (2006) Systematic observation requirements for satellite-based products for climate – supplemental details to the satellite-based component of the GCOS implementation plan. GCOS-107

    Google Scholar 

  • GCOS [Global Climate Observing System] (2011) Systematic observation requirements for satellite-based products for climate – supplemental details to the satellite-based component of the GCOS implementation plan for the global observing system for climate in support of the UNFCCC – 2011 update. GCOS-154

    Google Scholar 

  • Gentemann CL, Minnett PJ, Le Borgne P, Merchant CJ (2008) Multi-satellite measurements of large diurnal warming events. Geophys Res Lett 35(22):L22602. doi:10.1029/2008GL035730

    Article  Google Scholar 

  • Hanafin JA, Minnett PJ (2005) Measurements of the infrared emissivity of a wind-roughened sea surface. Appl Opt 44(3):398–411. doi:10.1364/AO.44.000398

    Article  Google Scholar 

  • Kantha LH, Clayson CA (1994) An improved mixed-layer model for geophysical applications. J Geophys Res 99(C12):25235–25266. doi:10.1029/94JC02257

    Article  Google Scholar 

  • Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179–9197

    Article  Google Scholar 

  • Le Borgne P, Roquet H, Merchant CJ (2011) Estimation of sea surface temperature from the spinning enhanced visible and infra red imager, improved using numerical weather prediction. Remote Sens Environ 115:55–66. doi:10.1016/j.rse.2010.08.004

    Article  Google Scholar 

  • Li X, Pichel W, Maturi E, Clemente-Colon P, Sapper J (2001) Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. Int J Remote Sens 22(4):699–704

    Article  Google Scholar 

  • Martin M, Dash P, Ignatov A et al (2012) Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep Sea Res Part II Top Stud Oceanogr 77–80:21–30. doi:10.1016/j.dsr2.2012.04.013

    Article  Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res 90:11587–11601

    Article  Google Scholar 

  • McMillin LM, Crosby DS (1984) Theory and validation of the multiple window sea surface temperature technique. J Geophys Res 89(C3):3655–3661

    Article  Google Scholar 

  • McPhaden M, et al (2010) The global tropical moored buoy array. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, Italy, 21–25 Sept 2009, ESA Publication WPP-306, doi: 10.5270/OceanObs09.cwp.61

    Google Scholar 

  • Meldrum D, et al (2010) Data buoy observations: the status quo and anticipated developments over the next decade. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, Italy, 21–25 Sept 2009, ESA Publication WPP-306, doi: 10.5270/OceanObs09.cwp.62

    Google Scholar 

  • Merchant CJ, Harris AR (1999) Toward the elimination of bias in satellite retrievals of sea surface temperature 2. Comparison with in situ measurements. J Geophys Res 104(C10):23579–23590. doi:10.1029/1999JC900106

    Article  Google Scholar 

  • Merchant CJ, Le Borgne P (2004) Retrieval of sea surface temperature from space, based on modelling of infrared radiative transfer: capabilities and limitations. J Atmos Ocean Technol 21(11):1734–1746. doi:10.1175/JTECH1667.1

    Article  Google Scholar 

  • Merchant CJ, Harris AR, Murray MJ, Zavody AM (1999) Toward the elimination of bias in satellite retrievals of skin sea surface temperature 1. Theory, modeling and inter-algorithm comparison. J Geophys Res 104(C10):23565–23578

    Article  Google Scholar 

  • Merchant CJ, Horrocks LA, Eyre JR, O’Carroll AG (2006) Retrievals of sea surface temperature from infrared imagery: origin and form of systematic errors. Q J R Meteorol Soc 132(617):1205–1223. doi:10.1256/qj.05.143

    Article  Google Scholar 

  • Merchant CJ, Le Borgne P, Marsouin A, Roquet H (2008) Optimal estimation of sea surface temperature from split-window observations. Remote Sens Environ 112(5):2469–2484. doi:10.1016/j.rse.2007.11.011

    Article  Google Scholar 

  • Merchant CJ, Harris AR, Roquet H, Le Borgne P (2009) Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophys Res Lett 36:L17604. doi:10.1029/2009GL039843

    Article  Google Scholar 

  • Merchant CJ, Embury O, Rayner NA, Berry DI, Corlett G, Lean K, Veal KL, Kent EC, Llewellyn-Jones D, Remedios JJ, Saunders R (2012) A twenty-year independent record of sea surface temperature for climate from Along Track Scanning Radiometers. J Geophys Res. doi:10.1029/2012JC008400

    Google Scholar 

  • Merchant CJ, LeBorgne P, Roquet H, Legendre G (2013) Extended optimal estimation techniques for sea surface temperature from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI). Remote Sens Environ 131:287–297

    Article  Google Scholar 

  • Minnett PJ (1990) The regional optimisation of infrared measurements of sea surface temperature from space. J Geophys Res 95:13497–13510

    Article  Google Scholar 

  • Minnett PJ, Corlett GK (2012) A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements. Deep-Sea Res II 77–80:44–51. doi:10.1016/j.dsr2.2012.04.003

    Article  Google Scholar 

  • Minnett PJ, Smith M, Ward B (2011) Measurements of the oceanic thermal skin effect. Deep Sea Res Part II Top Stud Oceanogr 58(6):861–868. doi:10.1016/j.dsr2.2010.10.024

    Article  Google Scholar 

  • Munk WH (1950) On the wind-driven ocean circulation. J Meteorol 7(2):79–93

    Article  Google Scholar 

  • Petrenko B, Ignatov A, Shabanov N, Kihai Y (2011) Development and evaluation of SST algorithms for GOES-R ABI using MSG SEVIRI as a proxy. Remote Sens Environ 115(12):3647–3658. doi:10.1016/j.rse.2011.09.003

    Article  Google Scholar 

  • Pichel W, Maturi E, Clemente-Colón P, Sapper J (2001) Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. Int J Remote Sens 22(4):699–704. doi:10.1080/01431160010013793

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Climate 20(22):5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Robinson IS (2004) Measuring the oceans from space: the principles and methods of satellite oceanography. Praxis Publishing Ltd., Chichester. ISBN 3-540-42647-7

    Google Scholar 

  • Robinson IS, Piollé JF, Le Borgne P, Poulter D, Donlon C, Olivier A (2012) Widening the application of AATSR SST data to operational tasks through the Medspiration Service. Remote Sens Environ 116:126–139. doi:10.1016/j.rse.20120.12.019

    Article  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific Publishing Co Ltd., Singapore. ISBN 081-02-2740-X

    Book  Google Scholar 

  • Rothman LS (2010) The evolution and impact of the HITRAN molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111(11):1565–1567. doi:10.1016/j.jqsrt.2010.01.027

    Article  Google Scholar 

  • Walton CC, Pichel WG, Sapper JF, May DA (1998) The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103:C12. doi:10.1029/98JC02370

    Google Scholar 

  • Ward B, Wanninkhof R, Minnett PJ, Head MJ (2004) SkinDeEP: a profiling instrument for upper-decameter sea surface measurements. J Atmos Ocean Technol 21(2):207–222. doi:10.1175/1520-0426(2004)021<0207:SAPIFU>2.0.CO;2

    Article  Google Scholar 

  • Wentz F, Gentemann C, Smith D et al (2000) Satellite measurements of sea surface temperature through clouds. Science 288(5467):847–850. doi:10.1126/science.288.5467.847

    Article  Google Scholar 

  • Wimmer W, Robinson IS, Donlon CJ (2012) Long-term validation of AATSR SST data products using shipborne radiometry in the Bay of Biscay and English channel. Remote Sens Environ 116:17–31. doi:10.1016/j.rse.2011.03.022

    Article  Google Scholar 

  • URL1: http://www.atsr.rl.ac.uk/images/sample/atsr-2

  • URL2: www.ghrsst.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Merchant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Merchant, C.J. (2013). Thermal Remote Sensing of Sea Surface Temperature. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_15

Download citation

Publish with us

Policies and ethics