Skip to main content

Epigenetic Regulation of Stem Cells

The Role of Chromatin in Cell Differentiation

  • Chapter
  • First Online:
Transcriptional and Translational Regulation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

The specialized cell types of tissues and organs are generated during development and are replenished over lifetime though the process of differentiation. During differentiation the characteristics and identity of cells are changed to meet their functional requirements. Differentiated cells then faithfully maintain their characteristic gene expression patterns. On the molecular level transcription factors have a key role in instructing specific gene expression programs. They act together with chromatin regulators which stabilize expression patterns. Current evidence indicates that epigenetic mechanisms are essential for maintaining stable cell identities. Conversely, the disruption of chromatin regulators is associated with disease and cellular transformation. In mammals, a large number of chromatin regulators have been identified. The Polycomb group complexes and the DNA methylation system have been widely studied in development. Other chromatin regulators remain to be explored. This chapter focuses on recent advances in understanding epigenetic regulation in embryonic and adult stem cells in mammals. The available data illustrate that several chromatin regulators control key lineage specific genes. Different epigenetic systems potentially could provide stability and guard against loss or mutation of individual components. Recent experiments also suggest intervals in cell differentiation and development when new epigenetic patterns are established. Epigenetic patterns have been observed to change at a progenitor state after stem cells commit to differentiation. This finding is consistent with a role of epigenetic regulation in stabilizing expression patterns after their establishment by transcription factors. However, the available data also suggest that additional, presently unidentified, chromatin regulatory mechanisms exist. Identification of these mechanism is an important aim for future research to obtain a more complete framework for understanding stem cell differentiation during tissue homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594

    PubMed  CAS  Google Scholar 

  2. Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145(6):835–850

    PubMed  CAS  Google Scholar 

  3. Rada-Iglesias A, Wysocka J (2011) Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Med 3(6):36

    PubMed  CAS  Google Scholar 

  4. Luger K, Mader AW, Richmond RK, Sargent DF et al (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389(6648):251–260

    PubMed  CAS  Google Scholar 

  5. Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY) 293(5532):1074–1080

    CAS  Google Scholar 

  6. Creyghton MP, Cheng AW, Welstead GG, Kooistra T et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936

    PubMed  CAS  Google Scholar 

  7. Mikkelsen TS, Ku M, Jaffe DB, Issac B et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    PubMed  CAS  Google Scholar 

  8. Bernstein BE, Mikkelsen TS, Xie X, Kamal M et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    PubMed  CAS  Google Scholar 

  9. Cui K, Zang C, Roh TY, Schones DE et al (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1):80–93

    PubMed  CAS  Google Scholar 

  10. Ku M, Koche RP, Rheinbay E, Mendenhall EM et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4(10):e1000242

    PubMed  Google Scholar 

  11. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49

    PubMed  CAS  Google Scholar 

  12. Lien WH, Guo X, Polak L, Lawton LN et al (2011) Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9(3):219–232

    PubMed  CAS  Google Scholar 

  13. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7(8):615–618

    PubMed  CAS  Google Scholar 

  14. Bracken AP, Dietrich N, Pasini D, Hansen KH et al (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20(9):1123–1136

    PubMed  CAS  Google Scholar 

  15. Mohn F, Weber M, Rebhan M, Roloff TC et al (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30(6):755–766

    PubMed  CAS  Google Scholar 

  16. Guttman M, Amit I, Garber M, French C et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    PubMed  CAS  Google Scholar 

  17. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283

    PubMed  CAS  Google Scholar 

  18. Peters AH, O’Carroll D, Scherthan H, Mechtler K et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    PubMed  CAS  Google Scholar 

  19. Dodge JE, Kang YK, Beppu H, Lei H et al (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24(6):2478–2486

    PubMed  CAS  Google Scholar 

  20. Yeap LS, Hayashi K, Surani MA (2009) ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin 2(1):12

    PubMed  Google Scholar 

  21. Yuan P, Han J, Guo G, Orlov YL et al (2009) Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev 23(21):2507–2520

    PubMed  CAS  Google Scholar 

  22. Matsui T, Leung D, Miyashita H, Maksakova IA et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–931

    PubMed  CAS  Google Scholar 

  23. Gu TP, Guo F, Yang H, Wu HP et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610

    PubMed  CAS  Google Scholar 

  24. Ang YS, Gaspar-Maia A, Lemischka IR, Bernstein E (2011) Stem cells and reprogramming: breaking the epigenetic barrier? Trends Pharmacol Sci 32(7):394–401

    PubMed  CAS  Google Scholar 

  25. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev 12(8):565–575

    CAS  Google Scholar 

  26. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev 12(6):429–442

    CAS  Google Scholar 

  27. Wutz A (2007) Xist function: bridging chromatin and stem cells. Trends Genet 23(9):457–464

    PubMed  CAS  Google Scholar 

  28. Sasaki H (2010) Mechanisms of trophectoderm fate specification in preimplantation mouse development. Dev Growth Differ 52(3):263–273

    PubMed  CAS  Google Scholar 

  29. Ralston A, Cox BJ, Nishioka N, Sasaki H et al (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development (Cambridge, England) 137(3):395–403

    CAS  Google Scholar 

  30. Niwa H, Toyooka Y, Shimosato D, Strumpf D et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    PubMed  CAS  Google Scholar 

  31. Li L, Sun L, Gao F, Jiang J et al (2010) Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci U S A 107(4):1402–1407

    PubMed  CAS  Google Scholar 

  32. Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10(5):615–624

    PubMed  CAS  Google Scholar 

  33. Nichols J, Silva J, Roode M, Smith A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge, England) 136(19):3215–3222

    CAS  Google Scholar 

  34. Silva J, Nichols J, Theunissen TW, Guo G et al (2009) Nanog is the gateway to the pluripotent ground state. Cell 138(4):722–737

    PubMed  CAS  Google Scholar 

  35. Mitsui K, Tokuzawa Y, Itoh H, Segawa K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    PubMed  CAS  Google Scholar 

  36. Chambers I, Silva J, Colby D, Nichols J et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450(7173):1230–1234

    PubMed  CAS  Google Scholar 

  37. Rossant J (2007) Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev 19(1):111–118

    PubMed  CAS  Google Scholar 

  38. Kunath T, Arnaud D, Uy GD, Okamoto I et al (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development (Cambridge, England) 132(7):1649–1661

    CAS  Google Scholar 

  39. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF et al (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25(1):91–99

    PubMed  CAS  Google Scholar 

  40. Nagy A, Gocza E, Diaz EM, Prideaux VR et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development (Cambridge, England) 110(3):815–821

    CAS  Google Scholar 

  41. Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537

    PubMed  CAS  Google Scholar 

  42. Ng RK, Dean W, Dawson C, Lucifero D et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10(11):1280–1290

    PubMed  CAS  Google Scholar 

  43. Alder O, Lavial F, Helness A, Brookes E et al (2011) Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development (Cambridge, England) 137(15):2483–2492

    Google Scholar 

  44. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    PubMed  CAS  Google Scholar 

  45. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    PubMed  CAS  Google Scholar 

  46. Bernardo AS, Faial T, Gardner L, Niakan KK et al (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9(2):144–155

    PubMed  CAS  Google Scholar 

  47. ten Berge D, Kurek D, Blauwkamp T, Koole W et al (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13(9):1070–1075

    PubMed  Google Scholar 

  48. Guo G, Yang J, Nichols J, Hall JS et al (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development (Cambridge, England) 136(7):1063–1069

    CAS  Google Scholar 

  49. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    PubMed  CAS  Google Scholar 

  50. Hanna J, Cheng AW, Saha K, Kim J et al (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107(20):9222–9227

    PubMed  CAS  Google Scholar 

  51. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW et al (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141(5):872–883

    PubMed  CAS  Google Scholar 

  52. Han DW, Tapia N, Joo JY, Greber B et al (2010) Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143(4):617–627

    PubMed  CAS  Google Scholar 

  53. Boyer LA, Plath K, Zeitlinger J, Brambrink T et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    PubMed  CAS  Google Scholar 

  54. Meissner A, Mikkelsen TS, Gu H, Wernig M et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    PubMed  CAS  Google Scholar 

  55. Xu Y, Wu F, Tan L, Kong L et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42(4):451–464

    PubMed  CAS  Google Scholar 

  56. Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev 12(2):123–135

    CAS  Google Scholar 

  57. Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H (2010) Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5(4):301–312

    PubMed  CAS  Google Scholar 

  58. de Napoles M, Mermoud JE, Wakao R, Tang YA et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7(5):663–676

    PubMed  Google Scholar 

  59. Fang J, Chen T, Chadwick B, Li E et al (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279(51):52812–52815

    PubMed  CAS  Google Scholar 

  60. Cao R, Wang L, Wang H, Xia L et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, NY) 298(5595):1039–1043

    CAS  Google Scholar 

  61. Stock JK, Giadrossi S, Casanova M, Brookes E et al (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435

    PubMed  CAS  Google Scholar 

  62. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B et al (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745

    PubMed  CAS  Google Scholar 

  63. Gehani SS, Agrawal-Singh S, Dietrich N, Christo-phersen NS et al (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39(6):886–900

    PubMed  CAS  Google Scholar 

  64. Seenundun S, Rampalli S, Liu QC, Aziz A et al (2010) UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO J 29(8):1401–1411

    PubMed  CAS  Google Scholar 

  65. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N et al (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465(7295):243–247

    PubMed  CAS  Google Scholar 

  66. Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S et al (2010) Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468(7327):1124–1128

    PubMed  CAS  Google Scholar 

  67. Blewitt ME, Gendrel AV, Pang Z, Sparrow DB et al (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40(5):663–669

    PubMed  CAS  Google Scholar 

  68. Sado T, Fenner MH, Tan SS, Tam P et al (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225(2):294–303

    PubMed  CAS  Google Scholar 

  69. Tahiliani M, Koh KP, Shen Y, Pastor WA et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, NY) 324(5929):930–935

    CAS  Google Scholar 

  70. Williams K, Christensen J, Pedersen MT, Johansen JV et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473(7347):343–348

    PubMed  CAS  Google Scholar 

  71. Pastor WA, Pape UJ, Huang Y, Henderson HR et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397

    PubMed  CAS  Google Scholar 

  72. Wu H, D’Alessio AC, Ito S, Xia K et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473(7347):389–393

    PubMed  CAS  Google Scholar 

  73. Rinn JL, Kertesz M, Wang JK, Squazzo SL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    PubMed  CAS  Google Scholar 

  74. Kohlmaier A, Savarese F, Lachner M, Martens J et al (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2(7):E171

    PubMed  Google Scholar 

  75. Mak W, Baxter J, Silva J, Newall AE et al (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12(12):1016–1020

    PubMed  CAS  Google Scholar 

  76. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science (New York, NY) 300(5616):131–135

    CAS  Google Scholar 

  77. Khalil AM, Guttman M, Huarte M, Garber M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    PubMed  CAS  Google Scholar 

  78. Guttman M, Donaghey J, Carey BW, Garber M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    PubMed  CAS  Google Scholar 

  79. Savarese F, Flahndorfer K, Jaenisch R, Busslinger M et al (2006) Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26(19):7167–7177

    PubMed  CAS  Google Scholar 

  80. Agrelo R, Souabni A, Novatchkova M, Haslinger C et al (2009) SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell 16(4):507–516

    PubMed  CAS  Google Scholar 

  81. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38(11):1278–1288

    PubMed  CAS  Google Scholar 

  82. Alvarez JD, Yasui DH, Niida H, Joh T et al (2000) The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14(5):521–535

    PubMed  CAS  Google Scholar 

  83. Agrelo R, Wutz A (2010) ConteXt of change–X inactivation and disease. EMBO Mol Med 2(1):6–15

    PubMed  CAS  Google Scholar 

  84. Xu CR, Cole PA, Meyers DJ, Kormish J et al (2011) Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science (New York, NY) 332(6032):963–966

    CAS  Google Scholar 

  85. van Arensbergen J, Garcia-Hurtado J, Moran I, Maestro MA et al (2011) Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 20(6):722–732

    Google Scholar 

  86. Asp P, Blum R, Vethantham V, Parisi F et al (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 108(22):E149–E158

    PubMed  Google Scholar 

  87. Mai JC, Ellenbogen RG (2008) SATB1: the convergence of carcinogenesis and chromatin conformation. Neurosurgery 63(2):N6

    PubMed  Google Scholar 

  88. Richon VM (2008) A new path to the cancer epigenome. Nat Biotechnol 26(6):655–656

    PubMed  CAS  Google Scholar 

  89. Brockdorff N (2009) SAT in silence. Dev Cell 16(4):483–484

    PubMed  CAS  Google Scholar 

  90. Agrelo R, Wutz A (2009) Cancer progenitors and epigenetic contexts: an Xisting connection. Epigenetics 4(8):568–570

    PubMed  CAS  Google Scholar 

  91. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    PubMed  CAS  Google Scholar 

  92. Howell CY, Bestor TH, Ding F, Latham KE et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104(6):829–838

    PubMed  CAS  Google Scholar 

  93. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    PubMed  CAS  Google Scholar 

  94. Bourc’his D, Xu GL, Lin CS, Bollman B et al (2001) Dnmt3L and the establishment of maternal genomic imprints. Science (New York, NY) 294(5551):2536–2539

    Google Scholar 

  95. Sharif J, Muto M, Takebayashi S, Suetake I et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    PubMed  CAS  Google Scholar 

  96. Sakaue M, Ohta H, Kumaki Y, Oda M et al (2010) DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr Biol 20(16):1452–1457

    PubMed  CAS  Google Scholar 

  97. Dawlaty MM, Ganz K, Powell BE, Hu YC et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9(2):166–175

    PubMed  CAS  Google Scholar 

  98. Ko M, Bandukwala HS, An J, Lamperti ED et al (2011) Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A 108(35):14566–14571

    PubMed  CAS  Google Scholar 

  99. Li Z, Cai X, Cai CL, Wang J et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518

    PubMed  CAS  Google Scholar 

  100. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24

    PubMed  CAS  Google Scholar 

  101. Quivoron C, Couronne L, Della Valle V, Lopez CK et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20(1):25–38

    PubMed  CAS  Google Scholar 

  102. Cortazar D, Kunz C, Selfridge J, Lettieri T et al (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470(7334):419–423

    PubMed  CAS  Google Scholar 

  103. Cortellino S, Xu J, Sannai M, Moore R et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67–79

    PubMed  CAS  Google Scholar 

  104. He YF, Li BZ, Li Z, Liu P et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science (New York, NY) 333(6047):1303–1307

    CAS  Google Scholar 

  105. O’Carroll D, Erhardt S, Pagani M, Barton SC et al (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21(13):4330–4336

    PubMed  Google Scholar 

  106. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E et al (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23(20):4061–4071

    PubMed  CAS  Google Scholar 

  107. Schumacher A, Faust C, Magnuson T (1996) Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 384(6610):648

    PubMed  CAS  Google Scholar 

  108. Voncken JW, Roelen BA, Roefs M, de Vries S et al (2003) Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci U S A 100(5):2468–2473

    PubMed  CAS  Google Scholar 

  109. Tachibana M, Sugimoto K, Nozaki M, Ueda J et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    PubMed  CAS  Google Scholar 

  110. Tachibana M, Matsumura Y, Fukuda M, Kimura H et al (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 27(20):2681–2690

    PubMed  CAS  Google Scholar 

  111. Wang J, Mager J, Chen Y, Schneider E et al (2001) Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet 28(4):371–375

    PubMed  CAS  Google Scholar 

  112. Chamberlain SJ, Yee D, Magnuson T (2008) Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells (Dayton, OH) 26(6):1496–1505

    CAS  Google Scholar 

  113. Leeb M, Wutz A (2007) Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol 178(2):219–229

    PubMed  CAS  Google Scholar 

  114. Schoeftner S, Sengupta AK, Kubicek S, Mechtler K et al (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25(13):3110–3122

    PubMed  CAS  Google Scholar 

  115. Leeb M, Pasini D, Novatchkova M, Jaritz M et al (2010) Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24(3):265–276

    PubMed  CAS  Google Scholar 

  116. Shen X, Liu Y, Hsu YJ, Fujiwara Y et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32(4):491–502

    PubMed  CAS  Google Scholar 

  117. Ezhkova E, Lien WH, Stokes N, Pasolli HA et al (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25(5):485–498

    PubMed  CAS  Google Scholar 

  118. Herz HM, Shilatifard A (2010) The JARID2-PRC2 duality. Genes Dev 24(9):857–861

    PubMed  CAS  Google Scholar 

  119. Li G, Margueron R, Ku M, Chambon P et al (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24(4):368–380

    PubMed  Google Scholar 

  120. Landeira D, Sauer S, Poot R, Dvorkina M et al (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 12(6):618–624

    PubMed  CAS  Google Scholar 

  121. Pasini D, Cloos PA, Walfridsson J, Olsson L et al (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464(7286):306–310

    PubMed  CAS  Google Scholar 

  122. Peng JC, Valouev A, Swigut T, Zhang J et al (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139(7):1290–1302

    PubMed  Google Scholar 

  123. Shen X, Kim W, Fujiwara Y, Simon MD et al (2009) Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139(7):1303–1314

    PubMed  Google Scholar 

  124. Li X, Isono K, Yamada D, Endo TA et al (2010) Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 31(2):351–364

    PubMed  CAS  Google Scholar 

  125. Casanova M, Preissner T, Cerase A, Poot R et al (2011) Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development (Cambridge, England) 138(8):1471–1482

    CAS  Google Scholar 

  126. Eskeland R, Leeb M, Grimes GR, Kress C et al (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38(3):452–464

    PubMed  CAS  Google Scholar 

  127. Molofsky AV, He S, Bydon M, Morrison SJ et al (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437

    PubMed  CAS  Google Scholar 

  128. Majewski IJ, Blewitt ME, de Graaf CA, McManus EJ et al (2008) Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol 6(4):e93

    PubMed  Google Scholar 

  129. Iwama A, Oguro H, Negishi M, Kato Y et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21(6):843–851

    PubMed  CAS  Google Scholar 

  130. Tian H, Biehs B, Warming S, Leong KG et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    PubMed  CAS  Google Scholar 

  131. Mejetta S, Morey L, Pascual G, Kuebler B et al (2011) Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J 30(17):3635–3646

    PubMed  CAS  Google Scholar 

  132. Luis NM, Morey L, Mejetta S, Pascual G et al (2011) Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell 9(3):233–246

    PubMed  CAS  Google Scholar 

  133. Juan AH, Derfoul A, Feng X, Ryall JG et al (2011) Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25(8):789–794

    PubMed  CAS  Google Scholar 

  134. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    PubMed  CAS  Google Scholar 

  135. Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S et al (2006) Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11(7):805–814

    PubMed  CAS  Google Scholar 

  136. Bostick M, Kim JK, Esteve PO, Clark A et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science (New York, NY) 317(5845):1760–1764

    CAS  Google Scholar 

  137. Ficz G, Branco MR, Seisenberger S, Santos F et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402

    PubMed  CAS  Google Scholar 

  138. Ito S, D’Alessio AC, Taranova OV, Hong K et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133

    PubMed  CAS  Google Scholar 

  139. Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108(9):3642–3647

    PubMed  CAS  Google Scholar 

  140. Nabel CS, Kohli RM (2011) Molecular biology. Demystifying DNA demethylation. Science (New York, NY) 333(6047):1229–1230

    CAS  Google Scholar 

  141. Fodor BD, Shukeir N, Reuter G, Jenuwein T (2010) Mammalian Su(var) genes in chromatin control. Annu Rev Cell Dev Biol 26:471–501

    PubMed  CAS  Google Scholar 

  142. Lohmann F, Loureiro J, Su H, Fang Q et al (2010) KMT1E mediated H3K9 methylation is required for the maintenance of embryonic stem cells by repressing trophectoderm differentiation. Stem Cells (Dayton, OH) 28(2):201–212

    CAS  Google Scholar 

  143. Kaji K, Nichols J, Hendrich B (2007) Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development (Cambridge, England) 134(6):1123–1132

    CAS  Google Scholar 

  144. Kaji K, Caballero IM, MacLeod R, Nichols J et al (2006) The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol 8(3):285–292

    PubMed  CAS  Google Scholar 

  145. Erhardt S, Su IH, Schneider R, Barton S et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development (Cambridge, England) 130(18):4235–4248

    CAS  Google Scholar 

  146. Smallwood SA, Tomizawa S, Krueger F, Ruf N et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43(8):811–814

    PubMed  CAS  Google Scholar 

  147. Chotalia M, Smallwood SA, Ruf N, Dawson C et al (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23(1):105–117

    PubMed  CAS  Google Scholar 

  148. Ciccone DN, Su H, Hevi S, Gay F et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418

    PubMed  CAS  Google Scholar 

  149. Kubicek S, O’Sullivan RJ, August EM, Hickey ER et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    PubMed  CAS  Google Scholar 

  150. Blomen VA, Boonstra J (2011) Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol Life Sci 68(1):27–44

    PubMed  CAS  Google Scholar 

  151. Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ et al (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580(26):6233–6241

    PubMed  CAS  Google Scholar 

  152. Garcia E, Marcos-Gutierrez C, del Mar LM, Moreno JC et al (1999) RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J 18(12):3404–3418

    PubMed  CAS  Google Scholar 

  153. Hansen KH, Bracken AP, Pasini D, Dietrich N et al (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10(11):1291–1300

    PubMed  CAS  Google Scholar 

  154. Margueron R, Justin N, Ohno K, Sharpe ML et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265):762–767

    PubMed  CAS  Google Scholar 

  155. Fischle W, Wang Y, Jacobs SA, Kim Y et al (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17(15):1870–1881

    PubMed  CAS  Google Scholar 

  156. Aguilo F, Zhou MM, Walsh MJ (2011) Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 71(16):5365–5369

    PubMed  CAS  Google Scholar 

  157. Loughery JE, Dunne PD, O’Neill KM, Meehan RR et al (2011) DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum Mol Genet 20(16):3241–3255

    PubMed  CAS  Google Scholar 

  158. Wutz A (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev 12(8):542–553

    CAS  Google Scholar 

  159. Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20(16):2223–2237

    PubMed  CAS  Google Scholar 

  160. Pullirsch D, Hartel R, Kishimoto H, Leeb M et al (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development (Cambridge, England) 137(6):935–943

    CAS  Google Scholar 

  161. Csankovszki G, Panning B, Bates B, Pehrson JR et al (1999) Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22(4):323–324

    PubMed  CAS  Google Scholar 

  162. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465(7295):175–181

    PubMed  CAS  Google Scholar 

  163. Kim K, Doi A, Wen B, Ng K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    PubMed  CAS  Google Scholar 

  164. Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9(1):17–23

    PubMed  CAS  Google Scholar 

  165. Pick M, Stelzer Y, Bar-Nur O, Mayshar Y et al (2009) Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells (Dayton, OH) 27(11):2686–2690

    CAS  Google Scholar 

  166. Ohi Y, Qin H, Hong C, Blouin L et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13(5):541–549

    PubMed  CAS  Google Scholar 

  167. Pomp O, Dreesen O, Leong DF, Meller-Pomp O et al (2011) Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell 9(2):156–165

    PubMed  CAS  Google Scholar 

  168. Tchieu J, Kuoy E, Chin MH, Trinh H et al (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7(3):329–342

    Google Scholar 

  169. Marro S, Pang ZP, Yang N, Tsai MC et al (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9(4):374–382

    PubMed  CAS  Google Scholar 

  170. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    PubMed  CAS  Google Scholar 

  171. Meivar-Levy I, Ferber S (2010) Adult cell fate reprogramming: converting liver to pancreas. Methods Mol Biol (Clifton, NJ) 636:251–283

    CAS  Google Scholar 

  172. Pawlak M, Jaenisch R (2011) De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev 25(10):1035–1040

    PubMed  CAS  Google Scholar 

  173. Pereira CF, Piccolo FM, Tsubouchi T, Sauer S et al (2010) ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6(6):547–556

    PubMed  CAS  Google Scholar 

  174. Tan M, Luo H, Lee S, Jin F et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    PubMed  CAS  Google Scholar 

  175. Muers M (2011) Chromatin: a haul of new histone modifications. Nat Rev 12(11):744

    CAS  Google Scholar 

  176. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438(7071):1176–1180

    PubMed  CAS  Google Scholar 

  177. Fischle W, Tseng BS, Dormann HL, Ueberheide BM et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071):1116–1122

    PubMed  CAS  Google Scholar 

  178. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science (New York, NY) 334(6053):194

    CAS  Google Scholar 

  179. Ottersbach K, Smith A, Wood A, Gottgens B (2011) Ontogeny of haematopoiesis: recent advances and open questions. Br J Haematol 148(3):343–355

    Google Scholar 

  180. Medvinsky A, Rybtsov S, Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development (Cambridge, England) 138(6):1017–1031

    CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for discussion and comments on the manuscript. AW was supported by a Wellcome Trust Senior Research Fellowship (grant reference 087530/Z/08/A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Wutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wutz, A. (2013). Epigenetic Regulation of Stem Cells. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_17

Download citation

Publish with us

Policies and ethics