Skip to main content

Nanoscale Science and Technology with Plant Viruses and Bacteriophages

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

Nanoscale science refers to the study and manipulation of matter at the atomic and molecular scales, including nanometer-sized single objects, while nanotechnology is used for the synthesis, characterization, and for technical applications of structures up to 100 nm size (and more). The broad nature of the fields encompasses disciplines such as solid-state physics, microfabrication, molecular biology, surface science, organic chemistry and also virology. Indeed, viruses and viral particles constitute nanometer-sized ordered architectures, with some of them even able to self-assemble outside cells. They possess remarkable physical, chemical and biological properties, their structure can be tailored by genetic engineering and by chemical means, and their production is commercially viable. As a consequence, viruses are becoming the basis of a new approach to the manufacture of nanoscale materials, made possible only by the development of imaging and manipulation techniques. Such techniques reach the scale of single molecules and nanoparticles. The most important ones are electron microscopy and scanning probe microscopy (both awarded with the Nobel Prize in Physics 1986 for the engineers and scientists who developed the respective instruments). With nanotechnology being based more on experimental than on theoretical investigations, it emerges that physical virology can be seen as an intrinsic part of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also especially recommended for further reading are references [1–3, 7, 9, 24, 48, 51] listed above.

Abbreviations

1D:

One-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

CCMV:

Cowpea chlorotic mottle virus

CP:

Capsid protein

CPMV:

Cowpea mosaic virus

DEP:

Dielectrophoresis

eBL:

Electron beam lithography

GFP:

Green fluorescent protein

ORF:

Open reading frame

SEM:

Scanning electron microscopy

SPM:

Scanning probe microscopy

STM:

Scanning tunneling microscopy

TEM:

Transmission electron microscopy

TMV:

Tobacco mosaic virus

VLP:

Virus-like particles

References and Further Reading

  1. Lee S-Y, Lim J-S, Harris MT (2012) Synthesis and application of virus-based hybrid nanomaterials. Biotechnol Bioeng 109:16–30

    Article  PubMed  CAS  Google Scholar 

  2. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  PubMed  CAS  Google Scholar 

  3. Strable E, Finn MG (2009) Chemical modification of viruses and virus-like particles in viruses and nanotechnology. In: Manchester M, Steinmetz NF (eds) Current topics in microbiology and immunology, vol 327. Springer, Berlin/Heidelberg, pp 1–21

    Google Scholar 

  4. Douglas T, Young MJ (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  5. Blum AS, Soto CM, Sapsford KE, Wilson CD, Moore MH, Ratna BR (2011) Molecular electronics based nanosensors on a viral scaffold. Biosens Bioelectron 26:2852–2857

    Article  PubMed  CAS  Google Scholar 

  6. Zhao Q, Chen W, Chen Y, Zhang L, Zhang J, Zhang Z (2011) Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. Bioconjug Chem 22:346–352

    Article  PubMed  CAS  Google Scholar 

  7. Sarikaya M, Tamerler C, Schwartz DT, Baneyx F (2004) Materials assembly and formation using engineered polypeptides. Annu Rev Mater Res 34:373–408

    Article  CAS  Google Scholar 

  8. Bruton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191

    Article  Google Scholar 

  9. Steinmetz NF, Evans DJ (2007) Utilisation of plant viruses in bionanotechnology. Org Biomol Chem 5:2891–2902

    Article  PubMed  CAS  Google Scholar 

  10. Steinmetz NF, Manchester M (2011) Viral nanoparticles – tools for materials science and biomedicine. Pan Stanford Publishing, Singapore

    Google Scholar 

  11. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems. J Am Chem Soc 129:3104–3109

    Article  PubMed  CAS  Google Scholar 

  12. Endo M, Wang H, Fujitsuka M, Majima T (2006) Pyrene-stacked nanostructures. Chem Eur J 12:3735–3740

    Article  PubMed  CAS  Google Scholar 

  13. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharmacol 8:29–43

    Article  CAS  Google Scholar 

  14. Kadri A, Maiss E, Amsharov N, Bittner AM, Barlic S, Kern K, Jeske H, Wege C (2011) Engineered tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Res 157:35–46

    Article  PubMed  CAS  Google Scholar 

  15. Elliot S (1998) The physics and chemistry of solids. Wiley, Chichester

    Google Scholar 

  16. Jones RAL (2008) Soft machines: nanotechnology and life. Oxford University Press, Oxford

    Google Scholar 

  17. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Waltham

    Google Scholar 

  18. Insung SC, Bowden N, Whitesides GM (1999) Macroscopic, hierarchical, two-dimensional self-assembly. Angew Chem Int Ed 38:3078–3081

    Article  Google Scholar 

  19. Lin Y, Su Z, Xiao G, Balizan E, Kaur G, Niu Z, Wang Q (2011) Self-assembly of virus particles on flat surfaces via controlled evaporation. Langmuir 27:1398–1402

    Article  PubMed  CAS  Google Scholar 

  20. Rong J, Lee LA, Li K, Harp B, Mello CM, Niu Z, Wang Q (2008) Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem Commun 41:5185–5187

    Article  Google Scholar 

  21. Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  PubMed  CAS  Google Scholar 

  22. Loo L, Guenther RH, Basnayake VR, Lommel SA, Franzen S (2006) Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503

    Article  PubMed  CAS  Google Scholar 

  23. Kuznetsov YG, McPherson A (2011) Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev 75:268–285

    Article  PubMed  CAS  Google Scholar 

  24. Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  PubMed  CAS  Google Scholar 

  25. Cuellar JL, Donath E (2012) Force microscopy – a tool to elucidate the relationship between nanomechanics and function in viruses. In: Frewin CL (ed) Atomic force microscopy investigations into biology – from cell to protein. Intech, Rijeka/Manhattan, pp 253–278

    Google Scholar 

  26. Guckenberger R, Heim M, Cevc G, Knapp HF, Wiegrabe W, Hillebrand A (1994) Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. Science 266:1538–1540

    Article  PubMed  CAS  Google Scholar 

  27. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663

    Article  PubMed  CAS  Google Scholar 

  28. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  PubMed  CAS  Google Scholar 

  29. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  PubMed  CAS  Google Scholar 

  30. Alonso JM, Ondarçuhu T, Bittner AM (2013) Integration of plant viruses in electron beam lithography nanostructures. Nanotechnology, 24: 105305

    Google Scholar 

  31. Ermolina I, Milner J, Morgan H (2006) Dielectrophoretic investigation of plant virus particles: cowpea mosaic virus and tobacco mosaic virus. Electrophoresis 27:3939–3948

    Article  PubMed  CAS  Google Scholar 

  32. Green N, Morgan H, Milner J (1997) Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. J Biochem Biophys Methods 35:89–102

    Article  PubMed  CAS  Google Scholar 

  33. Fraden S, Maret G, Caspar DLD (1993) Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaic virus. Phys Rev E 48:2816–2837

    Article  CAS  Google Scholar 

  34. Hirai M, Koizumi M, Han R, Hayakawa T, Sano Y (2003) Right-/left-circular orientation of biological macromolecules under magnetic field gradient. J Appl Crystallogr 36:520–524

    Article  CAS  Google Scholar 

  35. Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I (2007) Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate. Chem Mater 19:2389–2391

    Article  CAS  Google Scholar 

  36. Kausche GA, Ruska H (1939) Die Sichtbarmachung der Adsorption von Metallkolloiden an Eiweißkörpern. Kolloid Z 89:21–26

    Article  CAS  Google Scholar 

  37. Górzny MŁ, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20:1295–1300

    Article  Google Scholar 

  38. Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I (2010) Fabrication of aligned magnetic nanoparticles using tobamoviruses. Nano Lett 10:773–776

    Article  PubMed  CAS  Google Scholar 

  39. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiß E, Kern K (2003) Biotemplate synthesis of 3 nm nickel and cobalt nanowires. Nano Lett 3:1079–1082

    Article  CAS  Google Scholar 

  40. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124

    Article  CAS  Google Scholar 

  41. Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912

    Article  PubMed  CAS  Google Scholar 

  42. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  PubMed  CAS  Google Scholar 

  43. Miura A, Hikono T, Matsumura T, Yano H, Hatayama T, Uraoka Y, Fuyuki T, Yoshii S, Yamashita I (2006) Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node. Jpn J Appl Phys 45:L1–L3

    Article  CAS  Google Scholar 

  44. Górzny MŁ, Walton AS, Wnek M, Stockley PG, Evans SD (2008) Four-probe electrical characterization of Pt-coated TMV-based nanostructures. Nanotechnology 19:165704

    Article  PubMed  Google Scholar 

  45. Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1:72–77

    Article  PubMed  CAS  Google Scholar 

  46. Wu Z, Mueller A, Degenhard S, Ruff E, Geiger F, Bittner AM, Wege C, Krill C III (2010) Enhancing the magnetoviscosity of ferrofluids by the addition of biological nanotubes. ACS Nano 4:4531–4538

    Article  PubMed  CAS  Google Scholar 

  47. Lee BY, Zhang J, Zueger C, Chung W-J, Yoo SY, Wang E, Meyer J, Ramesh R, Lee S-W (2012) Virus-based piezoelectric energy generation. Nat Nanotechnol 7(6):351–356

    Article  PubMed  CAS  Google Scholar 

  48. Soto CM, Ratna BR (2010) Virus hybrids as nanomaterials for biotechnology. Curr Opin Biotechnol 21:426–438

    Article  PubMed  CAS  Google Scholar 

  49. Werner S, Marillonnet S, Hause G, Klimyuk V, Gleba Y (2006) Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proc Natl Acad Sci USA 103:17678–17683

    Article  PubMed  CAS  Google Scholar 

  50. Smolenska L, Roberts IM, Learmonth D, Porter AJ, Harris WJ, Wilson TMA, Santa Cruz S (1998) Production of a functional single chain antibody attached to the surface of a plant virus. FEBS Lett 441:379–382

    Article  PubMed  CAS  Google Scholar 

  51. Montague NP, Thuenemann EC, Saxena P, Saunders K, Lenzi P, Lomonossoff GP (2011) Recent advances of cowpea mosaic virus-based particle technology. Hum Vaccines 7:383–390

    Article  CAS  Google Scholar 

  52. Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103:1215–1220

    Article  PubMed  CAS  Google Scholar 

  53. Soto CM, Blum AS, Vora GJ, Lebedev N, Meador CE, Won AP, Chatterji A, Johnson JE, Ratna BR (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128:5184–5189

    Article  PubMed  CAS  Google Scholar 

  54. Mueller A, Eber FJ, Azucena C, Petershans A, Bittner AM, Gliemann H, Jeske H, Wege C (2011) Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers. ACS Nano 5:4512–4520

    Article  PubMed  CAS  Google Scholar 

  55. Mao C, Liu A, Cao B (2009) Virus-based chemical and biological sensing. Angew Chem Int Ed 48:6790–6810

    Article  CAS  Google Scholar 

  56. Frolova OY, Petrunia IV, Komarova TV, Kosorukov VS, Sheval EV, Gleba YY, Dorokhov YL (2010) Trastuzumab-binding peptide display by tobacco mosaic virus. Virol 407:7–13

    Article  CAS  Google Scholar 

  57. Lee LA, Nguyen QL, Wu L, Horvath G, Nelson RS, Wang Q (2012) Mutant plant viruses with cell binding motifs provide differential adhesion strengths and morphologies. Biomacromolecules 13:422–431

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Bäeuerlein E, Behrens P, Epple M (2007) Handbook of biomineralization. Wiley, Weinheim

    Google Scholar 

  • Jones RAL (2008) Soft machines: nanotechnology and life. Oxford University Press, Oxford

    Google Scholar 

  • Steinmetz NF, Manchester M (2011) Viral nanoparticles – tools for materials science and biomedicine. Pan Standford Publishing, Singapore

    Google Scholar 

Download references

Acknowledgements

We are grateful for funding for the projects “Functionality-on-a-Stick” and “Serially ordered virus scaffolds” (Kompetenznetz “Funktionelle Nanostrukturen”, Baden-Württemberg Stiftung), “MAGNIFYCO” (European Union, FP7-NMP4-SL-2009-228622), “Nanofluidica en Biotubos Moleculares” (Basque Country, PI2010-7), to the DFG, namely PAK410 and Priority Programmes SPP-1165 (Nanowires and nanotubes: from controlled synthesis to functions) and SPP-1569 (Generation of multifunctional inorganic materials by molecular bionics), and “NANOFLUID” (MICINN Spain, MAT2010-16184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bittner, A.M., Alonso, J.M., Górzny, M.Ł., Wege, C. (2013). Nanoscale Science and Technology with Plant Viruses and Bacteriophages. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_22

Download citation

Publish with us

Policies and ethics