Skip to main content

Toxic Nonprotein Amino Acids

  • Reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

The 20 DNA-coded protein amino acids play central roles in the metabolism of most organisms. As well as being the building blocks for proteins, they play essential roles in a diverse range of metabolic pathways. They are estimated to be around 1000 molecules in nature, which share the same basic structure as these organic amino acids consisting of an α-carbon attached to a carboxyl group, an amino group, a hydrogen atom, and a unique side-chain group. Many “nonprotein” amino acids (NPAAs) are plant secondary metabolites.

In this chapter, the authors discuss plant NPAAs that have a similar chemical structure, size, shape, and charge to protein amino acids and can be mistakenly used in protein synthesis, interfere in biochemical pathways, overstimulate receptors, or chelate metal ions. Most often this results in some level of toxicity to the target organism and can confer some advantage to the plant. Toxic NPAAs might have evolved as defense chemicals that can be released into the soil to inhibit the growth of other plants or agents that can limit insect herbivory.

The effects of NPAAs on human health are not well understood. Consumption of a number of plants that contain NPAAs has been shown to have acutely toxic effects in humans. The key questions that remain unanswered are to what extent can NPAAs enter the food chain and what are the effects of a chronic low-level exposure to toxic plant NPAAs?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66(2):479–93. doi:10.1093/jxb/eru489.

    Article  CAS  PubMed  Google Scholar 

  • Bell EA. Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem. 2003;51(10):2854–65.

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Weston LA, Huang T, Jander G, Owens T, Meinwald J, Schroeder FC. Grass roots chemistry: meta-Tyrosine, an herbicidal nonprotein amino acid. Proc Natl Acad Sci. 2007;104(43):16964–9. doi:10.1073/pnas.0707198104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunawan NC, Rastegar A, White KP, Wang NE. Djenkolism: case report and literature review. Int Med Case Rep J. 2014;7:79–84. doi:10.2147/IMCRJ.S58379.

    PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva AE, Keys AJ, Beale MH, Ward JL, Baker JM, Hawkins ND, Arrabaça MC, Parry MAJ. Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses. Phytochemistry. 2009;70(5):664–71. doi:10.1016/j.phytochem.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ. l-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol. 2012;238(1):29–37. doi:10.1016/j.expneurol.2011.09.029.

    Article  CAS  PubMed  Google Scholar 

  • Chang H-C, Lee T-H, Chuang L-Y, Yen M-H, Hung W-C. Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms. Cancer Lett. 1999;145(1–2):1–8. doi:10.1016/S0304-3835(99)00209-8.

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, Kuo Y-L. Allelopathic research of subtropical vegetation in Taiwan. J Chem Ecol. 1986;12(6):1431–48.

    Article  CAS  PubMed  Google Scholar 

  • Cox PA. Conclusion to the symposium: the seven pillars of the cyanobacteria/BMAA hypothesis. Amyotroph Lateral Scler. 2009;10 Suppl 2:124–6. doi:10.3109/17482960903312912.

    Article  PubMed  Google Scholar 

  • Crawford G, Puschner B, Affolter V, Stalis I, Davidson A, Baker T, Tahara J, Jolly A, Ostapak S. Systemic effects of Leucaena leucocephala ingestion on ringtailed lemurs (Lemur catta) at Berenty Reserve, Madagascar. Am J Primatol. 2015;77(6):633–41. doi:10.1002/ajp.22386.

    Article  PubMed  Google Scholar 

  • Dalzell SA, Burnett DJ, Dowsett JE, Forbes VE, Shelton HM. Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim Prod Sci. 2012;52(5):365–72.

    Article  Google Scholar 

  • Dunlop RA, Cox PA, Banack SA, Rodgers KJ. The non-protein amino acid BMAA is misincorporated into human proteins in place of l-serine causing protein misfolding and aggregation. PLoS One. 2013;8(9):1–6. doi:10.1371/journal.pone.0075376.

    Article  Google Scholar 

  • Fitter A. Ecology. Making allelopathy respectable. Science. 2003;301(5638):1337–8. doi:10.1126/science.1089291.

    Article  CAS  PubMed  Google Scholar 

  • Fowden L. Non-protein amino acids of plants. Food Chem. 1981;6(3):201–11. doi:10.1016/0308-8146(81)90009-1.

    Article  CAS  Google Scholar 

  • Fowden L, Lewis D, Tristram H. Toxic amino acids: their action as antimetabolites. Adv Enzymol Relat Areas Mol Biol. 1967;29:89–163.

    CAS  PubMed  Google Scholar 

  • Golisz A, Sugano M, Hiradate S, Fujii Y. Microarray analysis of Arabidopsis plants in response to allelochemical l-DOPA. Planta. 2011;233(2):231–40. doi:10.1007/s00425-010-1294-7.

    Article  CAS  PubMed  Google Scholar 

  • Hallak M, Vazana L, Shpilberg O, Levy I, Mazar J, Nathan I. A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation. Apoptosis. 2008;13(1):147–55. doi:10.1007/s10495-007-0156-7.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson TL, de Crecy-Lagard VF, Schimmel P. Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem. 2004;73:147–79.

    Article  CAS  PubMed  Google Scholar 

  • Hylin JW, Lichton IJ. Production of reversible infertility in rats by feeding mimosine. Biochem Pharmacol. 1965;14(7):1167–9. doi:10.1016/0006-2952(65)90048-1.

    Article  CAS  PubMed  Google Scholar 

  • Igloi GL, Schiefermayr E. Amino acid discrimination by arginyl-tRNA synthetases as revealed by an examination of natural specificity variants. FEBS J. 2009;276(5):1307–18. doi:10.1111/j.1742-4658.2009.06866.x.

    Article  CAS  PubMed  Google Scholar 

  • Joskow R, Belson M, Vesper H, Backer L, Rubin C. Ackee fruit poisoning: an outbreak investigation in Haiti 2000–2001, and review of the literature. Clin Toxicol. 2006;44(3):267–73.

    Article  Google Scholar 

  • Krakauer J, Long Y, Kolbert A, Thanedar S, Southard J. Presence of l-canavanine in Hedysarum alpinum seeds and its potential role in the death of Chris McCandless. Wilderness Environ Med. 2015;26(1):36–42. doi:10.1016/j.wem.2014.08.014.

    Article  PubMed  Google Scholar 

  • Lalande M. A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res. 1990;186(2):332–9. doi:10.1016/0014-4827(90)90313-Y.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H. The mechanisms of phytotoxic action and selectivity of non-protein aromatic amino acids l-DOPA and m-tyrosine. J Pestic Sci. 2011;36(1):1–8. doi:10.1584/jpestics.R10-15.

    Article  CAS  Google Scholar 

  • Miserez A, Schneberk T, Sun C, Zok FW, Waite JH. The transition from stiff to compliant materials in squid beaks. Science. 2008;319(5871):1816–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra VN, Tripathi CB, Kumar A, Nandmer V, Ansari AZ, Kumar B, Chaurasia RN, Joshi D. Lathyrism: has the scenario changed in 2013? Neurol Res. 2014;36(1):38–40. doi:10.1179/1743132813Y.0000000258.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A. Effect of gamma-aminobutyric acid (GABA) on root growth of Allium Sativum. Ind J Fundam Appl Life Sci. 2014;4(1):171–5.

    Google Scholar 

  • Nunn PB, Bell EA, Watson AA, Nash RJ. Toxicity of non-protein amino acids to humans and domestic animals. Nat Prod Commun. 2010;5(3):485–604.

    Google Scholar 

  • O’Neal RM, Chen CH, Reynolds CS, Meghal SK, Koeppe RE. The ‘neurotoxicity’ of l-2,4-diaminobutyric acid. 1968 (0264–6021 (Print)). doi:D - NLM: PMC1198561 EDAT- 1968/02/01 MHDA- 1968/02/01 00:01 CRDT- 1968/02/01 00:00 PST - publish

    Google Scholar 

  • Or K, Ward D. The effects of seed quality and pipecolic and djenkolic acids on bruchid beetle infestation in water deficit-stressed Acacia trees. J Chem Ecol. 2004;30(11):2297–307.

    Article  CAS  PubMed  Google Scholar 

  • Ossedryver SM, Baldwin GI, Stone BM, McKenzie RA, van Eps AW, Murray S, Fletcher MT. Indigofera spicata (creeping indigo) poisoning of three ponies. Aust Vet J. 2013;91(4):143–9. doi:10.1111/avj.12032.

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Headlam MJ, Mouradov D, Watt SJ, Beck JL, Rodgers KJ, Dean RT, Huber T, Otting G, Dixon NE. Translational incorporation of l-3,4-dihydroxyphenylalanine into proteins. FEBS J. 2005;272:3162–71.

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Meinitzer A, Gaksch M, Grubler M, Verheyen N, Drechsler C, Hartaigh BO, Lang F, Alesutan I, Voelkl J, Marz W, Tomaschitz A. Homoarginine in the renal and cardiovascular systems. Amino Acids. 2015. doi:10.1007/s00726-015-1993-2.

    Google Scholar 

  • Potter DA, Held DW. Biology and management of the Japanese beetle. Annu Rev Entomol. 2002;47:175–205. doi:10.1146/annurev.ento.47.091201.145153.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen MA, Allison MJ, Foster JG. Flatpea intoxication in sheep and indications of ruminal adaptation. Vet Hum Toxicol. 1993;35(2):123–7.

    CAS  PubMed  Google Scholar 

  • Rehr SS, Janzen DH, Feeny PP. l-DOPA in legume seeds: a chemical barrier to insect attack. Science. 1971;181:81–2.

    Article  Google Scholar 

  • Richmond MH. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962;26(4):398–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers KJ. Non-protein amino acids and neurodegeneration: the enemy within. Exp Neurol. 2014;253:192–6. doi:10.1016/j.expneurol.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KJ, Dean RT. The metabolism of protein-bound DOPA in mammals. Int J Biochem Cell Biol. 2000;32(9):945–55.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KJ, Shiozawa N. Misincorporation of amino acid analogues into proteins by biosynthesis. Int J Biochem Cell Biol. 2008;40(8):1452–66. doi:10.1016/j.biocel.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KJ, Wang H, Fu S, Dean RT. Biosynthetic incorporation of oxidized amino acids into proteins and their cellular proteolysis. Free Radic Biol Med. 2002;32(8):766–75.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist G, Westermark B, Hugosson R. Induction of complete and irreversible damage to malignant glioma cells by l-2,4 diaminobutyric acid. Anticancer Res. 1984;4(4–5):225–8.

    CAS  PubMed  Google Scholar 

  • Ronquist G, Hugosson R, Sjolander U, Ungerstedt U. Treatment of malignant glioma by a new therapeutic principle. Acta Neurochir. 1992;114(1–2):8–11.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA. The biological effects and mode of action of l-canavanine, a structural analogue of l-arginine. Q Rev Biol. 1977;52(2):155–78.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA. l-Canavanine: a higher plant insecticidal allelochemical. Amino Acids. 2001;21:319–30.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA, Dahlman DL. l-Canavanine and protein synthesis in the tobacco hornworm Manduca sexta. Proc Natl Acad Sci U S A. 1986;83(1):14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman SM. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci. 1985;5(6):1483–9.

    CAS  PubMed  Google Scholar 

  • Rubenstein E. Biologic effects of and clinical disorders caused by nonprotein amino acids. Medicine. 2000;79(2):80–9.

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein E. Misincorporation of the proline analog azetidine-2-carboxylic acid in the pathogenesis of multiple sclerosis: a hypothesis. J Neuropathol Exp Neurol. 2008;67(11):1035–40. doi:10.1097/NEN.0b013e31818add4a.

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein E, McLaughlin T, Winant RC, Sanchez A, Eckart M, Krasinska KM, Chien A. Azetidine-2-carboxylic acid in the food chain. Phytochemistry. 2009;70(1):100–4. doi:10.1016/j.phytochem.2008.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki H, Shibuya I. A new potent excitant, quisqualic acid: effects on crayfish neuromuscular junction. Neuropharmacology. 1974;13(7):665–72.

    Article  CAS  PubMed  Google Scholar 

  • Smith IK, Fowden L. Studies on the specificities of the phenylalanyl- and tyrosyl-sRNA synthetases from plants. Phytochemistry. 1968;7(7):1064–75. doi:10.1016/S0031-9422(00)88252-7.

    Article  Google Scholar 

  • Soares AR, Marchiosi R, Siqueira-Soares Rde C, Barbosa de Lima R, Dantas dos Santos W, Ferrarese-Filho O. The role of l-DOPA in plants. Plant Signal Behav. 2014;9(4):e28275. doi:10.4161/psb.28275.

    Article  PubMed Central  Google Scholar 

  • Thomas DA, Rosenthal GA. Toxicity and pharmacokinetics of the nonprotein amino acid l-canavanine in the rat. Toxicol Appl Pharmacol. 1987;91(3):395–405.

    Article  CAS  PubMed  Google Scholar 

  • Vestena S, Fett-Neto AG, Duarte RC, Ferreira AG. Regulation of mimosine accumulation in Leucaena leucocephala seedlings. Plant Sci. 2001;161:597–604.

    Article  CAS  Google Scholar 

  • Vranova V, Rejsek K, Skene K, Formanek P. Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil. 2011;342(1–2):31–48. doi:10.1007/s11104-010-0673-y.

    Article  CAS  Google Scholar 

  • Weber AL, Miller SL. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol. 1981;17(5):273–84.

    Article  CAS  PubMed  Google Scholar 

  • Woldeamanuel YW, Hassan A, Zenebe G. Neurolathyrism: two Ethiopian case reports and review of the literature. J Neurol. 2012;259(7):1263–8. doi:10.1007/s00415-011-6306-4.

    Article  PubMed  Google Scholar 

  • Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM. Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry. 2006;67(2):107–21. doi:10.1016/j.phytochem.2005.10.022.

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Lipka AE, Schmelz EA, Buckler ES, Jander G. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. 2015 (1460–2431 (Electronic)). doi:D - NLM: PMC4286406 OTO - NOTNLM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Rodgers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rodgers, K.J., Samardzic, K., Main, B.J. (2017). Toxic Nonprotein Amino Acids. In: Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_9

Download citation

Publish with us

Policies and ethics