Skip to main content

Evolutionary Context of Venom in Animals

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Much of the research on venoms has understandably focused on clinical implications of human envenomation and detailed molecular studies of toxins. However, as with any biological trait, venom exists in an evolutionary context and must be considered as such if we are to gain a full understanding of the biology of animal venoms. Consequently, this chapter aims to provide an overview of the diversity of venom and venomous animals and also a set of evolutionary principles which are particularly applicable here. There has been substantial variation in the definition of “venom” and “venomous” in the literature, so this is discussed first with the aim of giving a definition which encompasses a number of important features of venoms. A survey of the functional diversity of venoms and taxonomic diversity of venomous animals is then provided as an introduction to the evolutionary drivers of venom and how it is distributed across the animal tree of life. The last three sections consider three principles that are important to venom evolution: (1) the composition of venom is variable both between and within species; (2) venom evolves in the context of antagonistic coevolutionary interactions; and (3) venom can have consequences for the ecology and evolution of animals that possess it beyond its direct functions to their behavioral ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM. Diversity of peptide toxins from stinging ant venoms. Toxicon. 2014;92:166–78.

    Article  CAS  PubMed  Google Scholar 

  • Andersen JF. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon. 2010;56:1120–9.

    Article  CAS  PubMed  Google Scholar 

  • Andersen JF, Hinnebusch BJ, Lucas DA, Conrads TP, Veenstra TD, Pham VM, Ribeiro JMC. An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots). BMC Genomics. 2007;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbuckle K. On the macroevolution of antipredator defence. Ph.D thesis. University of Liverpool; 2015.

    Google Scholar 

  • Arbuckle K, Brockhurst M, Speed MP. Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evol Ecol. 2013;27:863–81.

    Article  Google Scholar 

  • Arbuckle K, Speed MP. Antipredator defences predict diversification rates. Proc Natl Acad Sci. 2015;in press.

    Google Scholar 

  • Baracchi D, Francese S, Turillazzi S. Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon. 2011;58:550–7.

    Article  CAS  PubMed  Google Scholar 

  • Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc R Soc B. 2009;276:2443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck DD. Biology of gila monsters and beaded lizards. Berkeley: University of California Press; 2005.

    Google Scholar 

  • Berkov A, Rodríguez N, Centeno P. Convergent evolution in the antennae of a cerambycid beetle, Onychocerus albitarsis, and the sting of a scorpion. Naturwissenschaften. 2008;95:257–61.

    Article  CAS  PubMed  Google Scholar 

  • Blanco MA, Sherman PW. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech Ageing Dev. 2005;126:794–803.

    Article  CAS  PubMed  Google Scholar 

  • Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL, Basbaum AI, Julius D. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 2011;479:410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer L, Alagón A, Fry BG, Jackson TNW, Sunagar K, Chippaux J-P. Signs, symptoms, and treatment of envenomation. In: Fry BG, editor. Venomous reptiles and their toxins: evolution, pathophysiology and biodiscovery. Oxford: Oxford University Press; 2015.

    Google Scholar 

  • Bullard SG, Hay ME. Palatability of marine macro-holoplankton: nematocysts, nutritional quality, and chemistry as defenses against consumers. Limnol Oceanogr. 2002;47:1456–67.

    Article  Google Scholar 

  • Cabezas-Cruz A, Valdés JJ. Are ticks venomous animals? Frontier Zool. 2014;11:47.

    Article  Google Scholar 

  • Carrijo-Carvalho LC, Chudzinski-Tavassi AM. The venom of the Lonomia caterpillar: an overview. Toxicon. 2007;49:741–57.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.

    Article  PubMed  Google Scholar 

  • Chippaux J-P. Snake venoms and envenomations. Florida: Krieger Publishing Company; 2006.

    Google Scholar 

  • Cornet V, Henry J, Corre E, Le Corguille G, Zanuttini B, Zatylny-Gaudin C. Dual role of the cuttlefish salivary proteome in defense and predation. J Proteomics. 2014;108:209–22.

    Article  CAS  PubMed  Google Scholar 

  • Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379:537–40.

    Article  CAS  PubMed  Google Scholar 

  • Drabeck DH, Dean AM, Jansa SA. Why the honey badger don’t care: convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon. 2015;99:68–72.

    Article  CAS  PubMed  Google Scholar 

  • Dugon MM, Arthur W. Comparative studies on the structure and development of the venom-delivery system of centipedes, and a hypothesis on the origin of this evolutionary novelty. Evol Develop. 2012;14:128–37.

    Article  Google Scholar 

  • Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014;5:3521.

    PubMed  PubMed Central  Google Scholar 

  • Edstrom A. Venomous and poisonous animals. Florida: Krieger Publishing Company; 1992.

    Google Scholar 

  • Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.

    Article  Google Scholar 

  • Endler JA. Defense against predators. In: Feder ME, Lauder GV, editors. Predator–prey relationships: perspectives and approaches from the study of lower vertebrates. Chicago: University of Chicago Press; 1986.

    Google Scholar 

  • Endler JA. Interactions between predator and prey. In: Krebs JR, Davies NB, editors. Behavioural ecology. Oxford: Blackwell Science; 1991.

    Google Scholar 

  • Fautin DG. Structural diversity, systematics, and evolution of cnidae. Toxicon. 2009;54:1054–64.

    Article  CAS  PubMed  Google Scholar 

  • Formanowicz DR. Foraging tactics of larvae of Dytiscus verticalis (Coleoptera: Dytiscidae): the assessment of prey density. J Animal Ecol. 1982;51:757–67.

    Article  Google Scholar 

  • Fox RC, Scott CS. First evidence of a venom delivery apparatus in extinct mammals. Nature. 2005;435:1091–3.

    Article  CAS  PubMed  Google Scholar 

  • Furtado MFD, Santos MC, Kamiguti AS. Age-related biological activity of South American rattlesnake (Crotalus durissus terrificus) venom. J Venom Anim Toxins Including Tropic Dis. 2003;9:186–201.

    Article  Google Scholar 

  • Furtado MFD, Travaglia-Cardoso SR, Rocha MMT. Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon. 2006;48:401–10.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG. From genome to ‘venome’: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15:403–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry BG. Venomous reptiles and their toxins: evolution, pathophysiology and biodiscovery. Oxford: Oxford University Press; 2015.

    Google Scholar 

  • Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E. Early evolution of the venom system in lizards and snakes. Nature. 2006;439:584–8.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009a;10:483–511.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Wroe S, Teeuwisse W, van Osch MJP, Moreno K, Ingle J, McHenry C, Ferrara T, Clausen P, Scheib H, Winter KL, Greisman L, Roelants K, van der Weerd L, Clemente CJ, Giannakis E, Hodgson WC, Luz S, Martelli P, Krishnasamy K, Kochva E, Kwok HF, Scanlon D, Karas J, Citron DM, Goldstein EJC, McNaughtan JE, Norman JA. A central role for venom in predation by Varanus komodoensis (Komodo dragon) and the extinct giant Varanus (Megalania) priscus. Proc Natl Acad Sci. 2009b;106:8969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Roelants K, Norman JA. Tentacles of venom: toxic protein convergence in the kingdom Animalia. J Mol Evol. 2009c;68:311–21.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Undheim EAB, Ali SA, Jackson TNW, Debono J, Scheib H, Ruder T, Morgenstern D, Cadwallader L, Whitehead D, Nabuurs R, van der Weerd L, Vidal N, Roelants K, Hendrikx I, Gonzalez SP, Koludarov I, Jones A, King GF, Antunes A, Sunagar K. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Mol Cell Proteom. 2013;12:1881–99.

    Article  CAS  Google Scholar 

  • Fry BG, Sunagar K, Casewell NR, Kochva E, Roelants K, Scheib H, Wüster W, Vidal N, Young B, Burbrink F, Pyron RA, Vonk FJ, Jackson TNW. The origin and evolution of the Toxicofera reptile venom system. In: Fry BG, editor. Venomous reptiles and their toxins: evolution, pathophysiology and biodiscovery. Oxford: Oxford University Press; 2015.

    Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature. 2013;495:520–3.

    Article  CAS  PubMed  Google Scholar 

  • Gong E, Martin LD, Burnham DA, Falk AR. The birdlike raptor Sinornithosaurus was venomous. Proc Natl Acad Sci. 2010;107:766–8.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood PG. Acquisition and use of nematocysts by cnidarians predators. Toxicon. 2009;54:1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grow NB, Wirdateti, Nekaris KAI. Does toxic defence in Nycticebus spp. relate to ectoparasites? The lethal effects of slow loris venom on arthropods. Toxicon. 2015;95:1–5.

    Google Scholar 

  • Heatwole H, Poran NS. Resistances of sympatric and allopatric eels to sea snake venoms. Copeia. 1995;1995:136–47.

    Article  Google Scholar 

  • Heatwole H, Powell J. Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution. Toxicon. 1998;36:619–25.

    Article  CAS  PubMed  Google Scholar 

  • Heiss E, Natchev N, Salaberger D, Gumpenberger M, Rabanser A, Weisgram J. Hurt yourself to hurt your enemy: new insights on the function of the bizarre antipredator mechanism in the salamandrid Pleurodeles waltl. J Zool. 2010;280:156–62.

    Article  Google Scholar 

  • Higginson AD, Delf J, Ruxton GD, Speed MP. Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. J Anim Ecol. 2011;80:384–92.

    Article  PubMed  Google Scholar 

  • Hildebrandt J-P, Lemke S. Small bite, large impact – saliva and salivary molecules in the medicinal leech, Hirudo medicinalis. Naturwissenschaften. 2011;98:995–1008.

    Article  CAS  PubMed  Google Scholar 

  • Hossie TJ, Hassall C, Knee W, Sherratt TN. Species with a chemical defence, but not chemical offence, live longer. J Evol Biol. 2013;26(7):1598–602.

    Article  CAS  PubMed  Google Scholar 

  • Hurley M. Growth dynamics and leaf quality of the stinging trees Dendrocnide moroides and Dendrocnide cordifolia (family Urticaceae) in Australian tropical rainforest: implications for herbivores. Australian J Bot. 2000;48:191–201.

    Article  Google Scholar 

  • Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN, Hammock BD. One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci. 2003;100:922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto M, Horikawa C, Shikata M, Wasaka N, Kato T, Sato H. Stinging hairs on the Japanese nettle Urtica thunbergiana have a defensive function against mammalian but not insect herbivores. Ecol Res. 2014;29:455–62.

    Article  Google Scholar 

  • Jared C, Mailho-Fontana PL, Antoniazzi MM, Mendes VA, Barbaro KC, Rodrigues MT, Brodie ED. Venomous frogs use heads as weapons. Curr Biol. 2015;25:2166–2170.

    Article  CAS  PubMed  Google Scholar 

  • Lee C-C, Tsai W-S, Hsieh H-J, Hwang D-F. Cytotoxicity of venom from crown-of-thorns starfish (Acanthaster planci) spine. Mol Cell Toxicol. 2013;9:177–84.

    Article  CAS  Google Scholar 

  • Leeming J. Scorpions of southern Africa. South Africa: Struik Publishers; 2003.

    Google Scholar 

  • Ligabue-Braun R, Verli H, Carlini CR. Venomous mammals: a review. Toxicon. 2012;59:680–95.

    Article  CAS  PubMed  Google Scholar 

  • Low DHW, Sunagar K, Undheim EAB, Ali SA, Alagon AC, Ruder T, Jackson TNW, Gonzalez SP, King GF, Jones A, Antunes A, Fry BG. Dracula’s children: molecular evolution of vampire bat venom. J Proteomics. 2013;89:95–111.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia. 1988;1988:92–101.

    Article  Google Scholar 

  • Mackessy SP. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2009.

    Book  Google Scholar 

  • McCue MD. Cost of producing venom in three North American pitviper species. Copeia. 2006;2006:818–25.

    Article  Google Scholar 

  • McCue MD. Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox). J Experiment Zool A. 2007;307:568–77.

    Article  Google Scholar 

  • Moreau SJM, Vinchon S, Cherqui A, Prévost G. Components of Asobara venoms and their effects on hosts. Adv Parasitol. 2009;70:217–32.

    Article  PubMed  Google Scholar 

  • Morgenstern D, King GF. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–8.

    Article  CAS  PubMed  Google Scholar 

  • Martinson EO, Wheeler D, Wright J, Alini M, Siebert AL, Werren JH. Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol. 2014;23:5918–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekaris KAI, Moore RS, Rode EJ, Fry BG. Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. J Venom Anim Toxins Incl Trop Dis. 2013;19:21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelsen DR, Nisani Z, Cooper AM, Fox GA, Gren ECK, Corbit AG, Hayes WK. Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. Biol Rev. 2014a;89:450–65.

    Article  PubMed  Google Scholar 

  • Nelsen DR, Kelln W, Hayes WK. Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Anim Behav. 2014b;89:107–14.

    Article  Google Scholar 

  • Nisani Z, Hayes WK. Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae). Behav Processes. 2015;115:46–52.

    Article  PubMed  Google Scholar 

  • Ochola JB, Lwande W, Thiong’o T, Rogo L, Herrmann R, Schepers E, Bagine R, Mungai P, Ndiege IO. Identification of insect-selective and mammal-selective toxins from Parabuthus leiosoma venom. Toxicon. 2007;50:449–56.

    Article  CAS  PubMed  Google Scholar 

  • O’Neal RL, Halstead BW, Howard LD. Injury to human tissues from sea urchin spines. Calif Med. 1964;101:199–202.

    PubMed  PubMed Central  Google Scholar 

  • Pekár S, Śedo O, Líznarová E, Korenko S, Zdráhal Z. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of giant prey. Naturwissenschaften. 2014;101:533–40.

    Article  PubMed  Google Scholar 

  • Pierce NE. Predatory and parasitic Lepidoptera: carnivores living on plants. J Lepidop Soc. 1995;49:412–53.

    Google Scholar 

  • Ribeiro JMC, Charlab R, Pham VM, Garfield M, Valenzuela JG. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem Mol Biol. 2004;34:543–63.

    Article  CAS  PubMed  Google Scholar 

  • Sannaningaiah D, Subbaiah GK, Kempaiah K. Pharmacology of spider venom toxins. Toxin Rev. 2014;33:206–20.

    Article  CAS  Google Scholar 

  • Sahayaraj K, Muthukumar S. Zootoxic effects of reduviid Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) venomous saliva on Spodoptera litura (Fab.). Toxicon. 2011;58:415–25.

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444:208–12.

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, Wheeler WC. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J Heredity. 2006;97:206–17.

    Article  CAS  Google Scholar 

  • Thomas RG, Pough FH. The effect of rattlesnake venom on digestion of prey. Toxicon. 1979;17:221–8.

    Article  CAS  PubMed  Google Scholar 

  • Tomalski MD, Bruce WA, Travis J, Blum MS. Preliminary characterization of toxins from the straw itch mite, Pyemotes tritici, which induce paralysis in the larvae of a moth. Toxicon. 1988;26:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol. 2013;23:76–82.

    Article  CAS  PubMed  Google Scholar 

  • Undheim EAB, King GF. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon. 2011;57:512–24.

    Article  CAS  PubMed  Google Scholar 

  • Vamosi SM. On the role of enemies in divergence and diversification of prey: a review and synthesis. Can J Zool. 2005;83:894–910.

    Article  Google Scholar 

  • Von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins. 2014a;6:3488–551.

    Article  Google Scholar 

  • Von Reumont BM, Blanke A, Richter S, Alvarez F, Bleidom C, Jenner RA. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin. Mol Biol Evol. 2014b;31:48–58.

    Article  Google Scholar 

  • Whittington CM, Koh JMS, Warren WC, Papenfuss AT, Torres AM, Kuchel PW, Belov K. Understanding and utilising mammalian venom via a platypus venom transcriptome. J Proteomics. 2009;72:155–64.

    Article  CAS  PubMed  Google Scholar 

  • Williams BL, Hanifin CT, Brodie ED, Caldwell RL. Ontogeny of tetrodotoxin levels in blue-ringed octopuses: maternal investment and apparent independent production in offspring of Hapalochlaena lunulata. J Chem Ecol. 2011;37:10–7.

    Article  CAS  PubMed  Google Scholar 

  • Wong ESW, Nicol S, Warren WC, Belov K. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom. PLoS One. 2013;8, e79092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. Chemical punch packed in venoms makes centipedes excellent predators. Mol Cell Proteom. 2012;11:640–50.

    Article  CAS  Google Scholar 

  • Young BA, Dunlap K, Koenig K, Singer M. The buccal buckle: the functional morphology of venom spitting in cobras. J Experiment Biol. 2004;207:3483–94.

    Article  Google Scholar 

  • Zibaee A, Hoda H, Fazeli-Dinan M. Role of proteases in extra-oral digestion of a predatory bug, Andrallus spinidens. J Insect Sci. 2012;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Arbuckle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Arbuckle, K. (2017). Evolutionary Context of Venom in Animals. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_16

Download citation

Publish with us

Policies and ethics