Skip to main content

Carbon Networks in the Solid State: A Setup Test for Computational Plane-Wave Studies of Mechanical and Electronic Properties

  • Chapter
  • First Online:
Diamond and Related Nanostructures

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

Computational studies of carbon networks, from simple structures (diamond, graphite) to carbon nanotubes, are usually carried out within solid-state physics frameworks. The method of choice is density functional theory coupled with periodic orbitals: plane waves, augmented plane waves, and periodicized Gaussian functions. This chapter recapitulates available approaches and describes a test of a computational setup for further use in the ab initio molecular dynamics studies. Two DFT functionals (BLYP, PBE) coupled with the DFT-D2 dispersion corrections are tested on graphite, diamond, and bct C4 networks. Convergence of energy values with respect to the supercell size and plane-wave energy cutoff, as well as optimization of structural parameters, indicates that the PBE-D2 approach is a reasonable choice for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  • Birowska M, Milowska K, Majewski JA (2011) Van der Waals density functionals for graphene layers and graphite. Acta Phys Pol A 120:845–848

    CAS  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  • CPMD (2012) The CPMD Consortium page. http://www.cpmd.org. Accessed 30 Nov 2012

  • Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  • Diudea M, Szefler B (2012) Nanotube junctions and genus of multi-tori. Phys Chem Chem Phys 14:8111–8115

    Article  CAS  Google Scholar 

  • Gaigeot MP, Sprik M (2003) Ab initio molecular dynamics computation of the infrared spectrum of aqueous uracil. J Phys Chem B 107:10344–10358

    Article  CAS  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  • Grimme S, Antony J, Ehrlich S, Krieg H (2011) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  • Grüneis A, Marsman M, Kresse G (2010) Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. J Chem Phys 133:074107

    Article  Google Scholar 

  • He C, Sun L, Zhang C, Peng X, Zhang K, Zhong J (2012) Phys Chem Chem Phys 14:8410–8414

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Kühne T, Krack M, Mohamed F, Parrinello P (2007) Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys Rev Lett 98:066401

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Marx D, Hutter J (2000) Ab initio molecular dynamics: theory and implementation. In: Grotendorst J (ed) NIC series: modern methods and algorithms of quantum chemistry proceedings, vol 3. John von Neumann Institute for Computing, Jülich, pp 329–477

    Google Scholar 

  • Oganov AR (ed) (2010) Modern methods of crystal structure prediction. Wiley-VCH, Berlin

    Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Rudberg E, Rubensson EH, Salek P (2011) Kohn–Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage. J Chem Theory Comput 7:340–350

    Article  CAS  Google Scholar 

  • Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  • Schultz PA, Leung K, Stechel EB (1999) Small rings and amorphous tetrahedral carbon. Phys Rev B 59:733–741

    Article  CAS  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  • Umemoto K, Wentzcovitch RE, Saito S, Miyake T (2010) Body-centered tetragonal C4: a viable sp 3 carbon allotrope. Phys Rev Lett 104:125504

    Article  Google Scholar 

  • Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) Towards extending the applicability of density functional theory to weakly bound systems. J Chem Phys 115:8748–8757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław J. Panek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panek, J.J., Jezierska-Mazzarello, A. (2013). Carbon Networks in the Solid State: A Setup Test for Computational Plane-Wave Studies of Mechanical and Electronic Properties. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_15

Download citation

Publish with us

Policies and ethics