Skip to main content

The Role of Myeloid Derived Suppressor Cells in Cancer

  • Chapter
  • First Online:
The Tumor Immunoenvironment
  • 2217 Accesses

Abstract

Inflammation is established as one of the central hallmarks of cancer. Although the immune system plays an indispensable role in immunosurveillance against cellular transformation, ample evidence demonstrates that certain immune cells can be unwitting conspirators in the promotion of tumors. Immature myeloid cells frequently accumulate in the tumor microenvironment and peripheral organs of cancer patients and in mouse tumor models and correlate with tumor progression and poor survival. Myeloid-derived suppressor cells are a heterogeneous population of immature myeloid cells with profound immunosuppressive abilities that contribute to immune dysfunction and tumor progression. In this chapter, the phenotypic and functional characteristics of MDSC, and the mechanisms underlying their development, accumulation and suppressor functions in murine and human cancers are described. The molecular and immunotherapeutic targeting of those pathways contributing to MDSC expansion and/or function are highlighted for their potential to overcome MDSC-mediated immunosuppression in tumor-bearing hosts and improve cancer treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  • Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490

    PubMed  CAS  Google Scholar 

  • Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728–5737

    PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003a) l-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:302–306

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A et al (2003b) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278

    PubMed  CAS  Google Scholar 

  • Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    Article  PubMed  CAS  Google Scholar 

  • Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Cao M, Xu Y, Youn JI, Cabrera R, Zhang X, Gabrilovich D et al (2011) Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Invest 91:598–608

    Article  PubMed  CAS  Google Scholar 

  • Chan T, Wiltrout RH, Weiss JM (2011) Immunotherapeutic modulation of the suppressive liver and tumor microenvironments. Portions reprinted from international immunopharmacology, vol 11(7), pp 879–889 (with permission from Elsevier)

    Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Comella P, Phase III (2001) trial of cisplatin/gemcitabine with or without vinorelbine or paclitaxel in advanced non-small cell lung cancer. Semin Oncol 28:7–10

    Article  PubMed  CAS  Google Scholar 

  • Connolly MK, Mallen-St Clair J, Bedrosian AS, Malhotra A, Vera V, Ibrahim J et al (2010) Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol 87:713–725

    Article  PubMed  CAS  Google Scholar 

  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P et al (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P et al (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102:4185–4190

    Article  PubMed  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C et al (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  • Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC et al (2009) Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol 9:937–948

    Article  PubMed  CAS  Google Scholar 

  • Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN et al (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357

    Article  PubMed  CAS  Google Scholar 

  • Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S (2010) Pivotal Advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol 88:839–848

    Article  PubMed  CAS  Google Scholar 

  • Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A et al (2008) Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 14:6674–6682

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA et al (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 71:2664–2674

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406

    PubMed  CAS  Google Scholar 

  • Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S et al (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70:2235–2244

    Article  PubMed  CAS  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    PubMed  CAS  Google Scholar 

  • Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944

    Article  PubMed  CAS  Google Scholar 

  • Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168:2255–2263

    PubMed  CAS  Google Scholar 

  • Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al (2010) Bone marrow myeloid-derived suppressor cells (MDSC) inhibit graft-versus-host (GVHD) disease via an arginase-1 dependent mechanism that is upregulated by IL-13. Blood 116:5738–5747

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

  • Ilkovitch D, Lopez DM (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69:5514–5521

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G et al (2012) Tumor-Expressed Inducible Nitric Oxide Synthase Controls Induction of Functional Myeloid-Derived Suppressor Cells through Modulation of Vascular Endothelial Growth Factor Release. J Immunol 188:5365–5376

    Article  PubMed  CAS  Google Scholar 

  • Jia W, Jackson-Cook C, Graf MR (2010) Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol 223:20–30

    Article  PubMed  CAS  Google Scholar 

  • Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH (2010) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol/Hematol 77:12–19

    Article  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD et al (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70:3526–3536

    Article  PubMed  CAS  Google Scholar 

  • Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmuno modulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  PubMed  CAS  Google Scholar 

  • Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284

    Article  PubMed  CAS  Google Scholar 

  • Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    PubMed  CAS  Google Scholar 

  • Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F et al (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol 188:5500–5510

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A (2004) Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 14:155–160

    Article  PubMed  CAS  Google Scholar 

  • Michels T, Shurin GV, Naiditch H, Sevko A, Umansky V, Shurin MR (2010) Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J Immunotoxicol 9(3):292–300

    Article  Google Scholar 

  • Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123:39–49

    Article  PubMed  CAS  Google Scholar 

  • Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P et al (2011) Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 71:5101–5110

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010a) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ et al (2010b) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812–1823

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich DI (2012) Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res 72:928–938

    Article  PubMed  CAS  Google Scholar 

  • Natale RB. Gemcitabine-containing regimens vs others in first-line treatment of NSCLC. Oncology (Williston Park, N.Y 2004; 18: 27–31

    Google Scholar 

  • Nausch N, Galani IE, Schlecker E, Cerwenka A (2008) Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112:4080–4089

    Article  PubMed  CAS  Google Scholar 

  • Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65:9525–9535

    Article  PubMed  CAS  Google Scholar 

  • Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  PubMed  CAS  Google Scholar 

  • Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463–7470

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Article  PubMed  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522

    Article  PubMed  CAS  Google Scholar 

  • Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103

    PubMed  CAS  Google Scholar 

  • Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM et al (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P (2012) Aptamer-mediated blockade of IL4R alpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res 72:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP, Muller M et al (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med 207:1453–1464

    Article  PubMed  CAS  Google Scholar 

  • Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  • Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188:1592–1599

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Parker KH, Horn L, Ostrand-Rosenberg S (2012) Tumor-induced myeloid-derived suppressor cell function is independent of IFN gamma and IL-4R alpha. Eur J Immunol

    Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007a) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007b) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  • Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA et al (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208

    PubMed  CAS  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  PubMed  CAS  Google Scholar 

  • Steding CE, Wu ST, Zhang Y, Jeng MH, Elzey BD, Kao C (2011) The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunol 133:221–238

    Article  CAS  Google Scholar 

  • Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  PubMed  CAS  Google Scholar 

  • Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC et al (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9:e1001162

    Article  PubMed  CAS  Google Scholar 

  • Turkson J, Zhang S, Mora LB, Burns A, Sebti S, Jove R (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280:32979–32988

    Article  PubMed  CAS  Google Scholar 

  • Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J et al (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29:2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS ONE 6:e27690

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54

    Article  PubMed  Google Scholar 

  • Weiss JM, Back TC, Scarzello AJ, Subleski JJ, Hall VL, Stauffer JK et al (2009) Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment. Proc Natl Acad Sci USA 106:19455–19460

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Du H, Li Y, Qu P, Yan C (2011) Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am J Pathol 179:2131–2141

    Article  PubMed  CAS  Google Scholar 

  • Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  • Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182:3801–3808

    Article  PubMed  CAS  Google Scholar 

  • Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N et al (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17:1765–1775

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weiss, J.M. (2013). The Role of Myeloid Derived Suppressor Cells in Cancer. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_16

Download citation

Publish with us

Policies and ethics