Skip to main content

Signaling of Tumor-Induced Immunosuppression of Dendritic Cells

  • Chapter
  • First Online:
The Tumor Immunoenvironment
  • 2185 Accesses

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells that regulate the immune system. In cancers, they uptake tumor-associated antigens, deliver them to T cells, and induce tumor-specific T cell responses. However, tumor cells develop mechanisms to evade the immune system, partly by impairing DC differentiation and function. Functionally deficient DCs may associate with acquisition of tolerogenic/immunosuppressive activities that actively block the development of antitumor immunity, and there is strong evidence supporting the presence of regulatory DCs in different DC subsets. Mechanistic studies reveal that intracellular signaling pathways, such as MAP kinases (MAPKs), JAK/STAT3, PI3 K/Akt, and NF-κB, which are critical to the regulation of DC differentiation, survival, and activity, are found to be hyperactivated both in tumor cells and in DCs in malignancies. The constitutive activation of these pathways in cancer cells leads to tumor cell secretion of cytokines that activate intracellular signaling pathways, particularly p38 MAPKs, in DCs or their progenitor cells and impair DC differentiation and function. In this chapter, we will discuss the dysfunction of DCs and the presence of regulatory DCs in cancer settings. We will focus on the signaling pathways that mediate DC dysfunction, particularly p38 MAPKs, in negatively regulating DC differentiation and function in cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboudola S, Murugesan G, Szpurka H, Ramsingh G, Zhao X, Prescott N et al (2007) Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation. Am J Surg Pathol 31:233–239

    Article  PubMed  Google Scholar 

  • Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M (2007) NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicol Sci 99:488–501

    Article  PubMed  CAS  Google Scholar 

  • Akbari O, Umetsu DT (2005) Role of regulatory dendritic cells in allergy and asthma. Curr Allergy Asthma R 5:56–61

    Article  CAS  Google Scholar 

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  • Aloysius MM, Takhar A, Robins A, Eremin O (2006) Dendritic cell biology, dysfunction and immunotherapy in gastrointestinal cancers. Surg J Roy Coll Surg Edinb Irel 4:195–210

    CAS  Google Scholar 

  • Aplin AE, Hogan BP, Tomeu J, Juliano RL (2002) Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 115:2781–2790

    PubMed  CAS  Google Scholar 

  • Arce F, Breckpot K, Stephenson H, Karwacz K, Ehrenstein MR, Collins M et al (2011) Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum 63:84–95

    Article  PubMed  CAS  Google Scholar 

  • Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046

    PubMed  CAS  Google Scholar 

  • Barclay JL, Anderson ST, Waters MJ, Curlewis JD (2007) Characterization of the SOCS3 promoter response to prostaglandin E2 in T47D cells. Mol Endocrinol 21:2516–2528

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp NM, Busick RY, Alexander-Miller MA (2010) Functional divergence among CD103 + dendritic cell subpopulations following pulmonary poxvirus infection. J Virol 84:10191–10199

    Article  PubMed  CAS  Google Scholar 

  • Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I et al (2009) Cross-presentation of viral and self antigens by skin-derived CD103 + dendritic cells. Nat Immunol 10:488–495

    Article  PubMed  CAS  Google Scholar 

  • Belz GT, Smith CM, Kleinert L, Reading P, Brooks A, Shortman K et al (2004) Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA 101:8670–8675

    Article  PubMed  CAS  Google Scholar 

  • Bendix I, Pfueller CF, Leuenberger T, Glezeva N, Siffrin V, Muller Y et al (2010) MAPK3 deficiency drives autoimmunity via DC arming. Eur J Immunol 40:1486–1495

    Article  PubMed  CAS  Google Scholar 

  • Bennaceur K, Chapman JA, Touraine JL, Portoukalian J (2009) Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 1795:16–24

    PubMed  CAS  Google Scholar 

  • Bharadwaj U, Zhang R, Yang H, Li M, Doan LX, Chen C et al (2005) Effects of cyclophilin A on myeloblastic cell line KG-1 derived dendritic like cells (DLC) through p38 MAP kinase activation. J Surg Res 127:29–38

    Article  PubMed  CAS  Google Scholar 

  • Budagian V, Bulanova E, Brovko L, Orinska Z, Fayad R, Paus R et al (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 278:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Campbell GS, Yu CL, Jove R, Carter-Su C (1997) Constitutive activation of JAK1 in Src-transformed cells. J Biol Chem 272:2591–2594

    Article  PubMed  CAS  Google Scholar 

  • Canesi L, Lorusso LC, Ciacci C, Betti M, Gallo G (2005) Effects of the brominated flame retardant tetrabromobisphenol-A (TBBPA) on cell signaling and function of Mytilus hemocytes: involvement of MAP kinases and protein kinase C. Aquat Toxicol 75:277–287

    Article  PubMed  CAS  Google Scholar 

  • Cheng CH, Yu KC, Chen HL, Chen SY, Huang CH, Chan PC et al (2004) Blockade of v-Src-stimulated tumor formation by the Src homology 3 domain of Crk-associated substrate (Cas). FEBS Lett 557:221–227

    Article  PubMed  CAS  Google Scholar 

  • Chou SD, Khan AN, Magner WJ, Tomasi TB (2005) Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 17:1483–1494

    Article  PubMed  CAS  Google Scholar 

  • Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Cruz MT, Duarte CB, Goncalo M, Carvalho AP, Lopes MC (1999) Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells. Am J Physiol 277:C1050–C1057

    PubMed  CAS  Google Scholar 

  • Demuth T, Reavie LB, Rennert JL, Nakada M, Nakada S, Hoelzinger DB et al (2007) MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther 6:1212–1222

    Article  PubMed  CAS  Google Scholar 

  • den Haan JM, Bevan MJ (2002) Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J Exp Med 196:817–827

    Article  CAS  Google Scholar 

  • Di Nicola M, Lemoli RM (2000) Dendritic cells: specialized antigen presenting cells. Haematologica 85:202–207

    PubMed  Google Scholar 

  • Do Y, Hegde VL, Nagarkatti PS, Nagarkatti M (2004) Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res 64:6756–6765

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    PubMed  CAS  Google Scholar 

  • Escors D, Lopes L, Lin R, Hiscott J, Akira S, Davis RJ et al (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111:3050–3061

    Article  PubMed  CAS  Google Scholar 

  • Evel-Kabler K, Chen SY (2006) Dendritic cell-based tumor vaccines and antigen presentation attenuators. Mol Ther J Am Soc Gene Ther 13:850–858

    Article  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C et al (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    PubMed  CAS  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI (2002) Dendritic cell vaccines for cancer treatment. Curr Opin Mol Ther 4:452–458

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses. II: dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119

    Article  PubMed  CAS  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Ghahary A, Li Y, Tredget EE, Kilani RT, Iwashina T, Karami A et al (2004) Expression of indoleamine 2,3-dioxygenase in dermal fibroblasts functions as a local immunosuppressive factor. J Invest Dermatol 122:953–964

    Article  PubMed  Google Scholar 

  • Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77:89–99

    Article  PubMed  CAS  Google Scholar 

  • Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B et al (2003) Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487

    PubMed  CAS  Google Scholar 

  • Hoentjen F, Sartor RB, Ozaki M, Jobin C (2005) STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105:689–696

    Article  PubMed  CAS  Google Scholar 

  • Hubert P, Jacobs N, Caberg JH, Boniver J, Delvenne P (2007) The cross-talk between dendritic and regulatory T cells: good or evil? J Leukoc Biol 82:781–794

    Article  PubMed  CAS  Google Scholar 

  • Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  • Isomura I, Shintani Y, Yasuda Y, Tsujimura K, Morita A (2008) Induction of regulatory dendritic cells by topical application of NF-kappaB decoy oligodeoxynucleotides. Immunol Lett 119:49–56

    Article  PubMed  CAS  Google Scholar 

  • Iwata-Kajihara T, Sumimoto H, Kawamura N, Ueda R, Takahashi T, Mizuguchi H et al (2011) Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J Immunol 187:27–36

    Article  PubMed  CAS  Google Scholar 

  • Jackson AM, Mulcahy LA, Zhu XW, O’Donnell D, Patel PM (2008) Tumour-mediated disruption of dendritic cell function: inhibiting the MEK1/2-p44/42 axis restores IL-12 production and Th1-generation. Int J Cancer (J Int Cancer) 123:623–632

    Article  CAS  Google Scholar 

  • Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2011) The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011:430394

    Article  PubMed  CAS  Google Scholar 

  • Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K et al. (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol (Baltimore Md: 1950) 180:3797–3806

    Google Scholar 

  • Jiang JL, Wang S, Li NS, Zhang XH, Deng HW, Li YJ (2007) The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochem Cell Biol 85:66–77

    Article  PubMed  CAS  Google Scholar 

  • Jing N, Zhu Q, Yuan P, Li Y, Mao L, Tweardy DJ (2006) Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol Cancer Ther 5:279–286

    Article  PubMed  CAS  Google Scholar 

  • Jost E (2007) do ON, Dahl E, Maintz CE, Jousten P, Habets L, et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21:505–510

    Article  PubMed  CAS  Google Scholar 

  • Kandilci A, Grosveld GC (2005) SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells. Leukemia 19:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Kang HK, Lee HY, Lee YN, Jo EJ, Kim JI, Aosai F et al (2004) Toxoplasma gondii-derived heat shock protein 70 stimulates the maturation of human monocyte-derived dendritic cells. Biochem Biophys Res Commun 322:899–904

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A et al (2003) MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb.[see comment]. Nat Cell Biol 5:513–519

    Article  PubMed  CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  PubMed  CAS  Google Scholar 

  • Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO et al (2005) Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 174:8116–8124

    PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K, Arihiro K (2006a) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006b) Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology 119:254–264

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood KL, Li F, Rogers JE, Otremba J, Coatney DD, Kreider JM et al (2007) A p38alpha selective mitogen-activated protein kinase inhibitor prevents periodontal bone loss. J Pharmacol Exp Ther 320:56–63

    Article  PubMed  CAS  Google Scholar 

  • Kitamura H, Kamon H, Sawa S, Park SJ, Katunuma N, Ishihara K et al (2005) IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. Immunity 23:491–502

    Article  PubMed  CAS  Google Scholar 

  • Koido S, Homma S, Hara E, Namiki Y, Takahara A, Komita H et al (2010) Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010:516768

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Jove R, Yu H (2005a) Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 24:315–327

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al (2005b) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Koski GK, Cohen PA, Roses RE, Xu S, Czerniecki BJ (2008) Reengineering dendritic cell-based anti-cancer vaccines. Immunol Rev 222:256–276

    Article  PubMed  CAS  Google Scholar 

  • Kurte M, Lopez M, Aguirre A, Escobar A, Aguillon JC, Charo J et al (2004) A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and Transporter associated with Antigen Processing 1/2 in human melanoma cells. J Immunol 173:1731–1737

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51:293–298

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2006a) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2006b) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother: CII 55:237–245

    Article  PubMed  Google Scholar 

  • Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A et al (2010) Generation of regulatory dendritic cells and CD4 + Foxp3 + T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107:2159–2164

    Article  PubMed  CAS  Google Scholar 

  • Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M et al (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother: CII 56:48–59

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Cho JW, Kim SC, Kang KH, Lee SK, Pi SH et al (2006) Roles of p38 and ERK MAP kinases in IL-8 expression in TNF-alpha- and dexamethasone-stimulated human periodontal ligament cells. Cytokine 35:67–76

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yu B, Song L, Eschrich S, Haura EB (2007) Effects of IFN-gamma and Stat1 on gene expression, growth, and survival in non-small cell lung cancer cells. J Interferon Cytokine Res 27:209–220

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Guo Z, Xu X, Xia S, Cao X (2008a) Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur J Immunol 38:2751–2761

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z et al (2008b) CD11c + CD11b + dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol 181:2483–2493

    PubMed  CAS  Google Scholar 

  • Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127:77–84

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Xiang Z, Ma X (2004) Role of IFN regulatory factor-1 and IL-12 in immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T lymphoma. J Immunol 173:1184–1193

    PubMed  CAS  Google Scholar 

  • Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182:6207–6216

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Hong S, Li H, Park J, Hong B, Wang L et al (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Investig 122:4160–4171

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor associated regulatory dendritic cells. Semin Cancer Biol 22:298–306

    Article  PubMed  CAS  Google Scholar 

  • Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241:206–227

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    Article  PubMed  CAS  Google Scholar 

  • Mata R, Subira D, Garcia-Raso A, Llamas P (2007) JAK2 as a molecular marker in myeloproliferative diseases. Cardiovasc Hematol Agents Med Chemistry. 5:198–203

    Article  CAS  Google Scholar 

  • Matos TJ, Duarte CB, Goncalo M, Lopes MC (2005a) Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol Cell Biol 83:607–614

    Article  PubMed  CAS  Google Scholar 

  • Matos TJ, Duarte CB, Goncalo M, Lopes MC (2005b) DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. J Dermatol Sci 39:113–123

    Article  PubMed  CAS  Google Scholar 

  • McKay DM, Botelho F, Ceponis PJ, Richards CD (2000) Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. Am J Physiol: Gastrointest Liver Physiol 279:G1094–G1103

    CAS  Google Scholar 

  • Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase. Immunity 22:633–642

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T, Uchi H, Urabe K, Chen Q, Furue M, Moroi Y (2004) Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. Int Immunol 16:1701–1709

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Zhou CJ, Parente J, Chew CS (1996) Parietal cell MAP kinases: multiple activation pathways. Am J Physiol 271:G640–G649

    PubMed  CAS  Google Scholar 

  • Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474

    PubMed  CAS  Google Scholar 

  • Nefedova Y, Cheng P, Gilkes D, Blaskovich M, Beg AA, Sebti SM et al (2005) Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol 175:4338–4346

    PubMed  CAS  Google Scholar 

  • Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG (2012) TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 28:615–621

    PubMed  CAS  Google Scholar 

  • Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M et al (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8 + T cell function via l-arginine metabolism. Cancer Res 69:3086–3094

    Article  PubMed  CAS  Google Scholar 

  • Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    Article  PubMed  CAS  Google Scholar 

  • O’Neill DW, Adams S, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Osawa Y, Iho S, Takauji R, Takatsuka H, Yamamoto S, Takahashi T et al (2006) Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. J Immunol 177:4841–4852

    PubMed  CAS  Google Scholar 

  • Palucka K, Ueno H, Fay J, Banchereau J (2009) Harnessing dendritic cells to generate cancer vaccines. Ann N Y Acad Sci 1174:88–98

    Article  PubMed  CAS  Google Scholar 

  • Palucka K, Ueno H, Roberts L, Fay J, Banchereau J (2010a) Dendritic cells: are they clinically relevant? Cancer J 16:318–324

    Article  PubMed  CAS  Google Scholar 

  • Palucka K, Ueno H, Zurawski G, Fay J, Banchereau J (2010b) Building on dendritic cell subsets to improve cancer vaccines. Curr Opin Immunol 22:258–263

    Article  PubMed  CAS  Google Scholar 

  • Palucka K, Ueno H, Fay J, Banchereau J (2011) Dendritic cells and immunity against cancer. J Intern Med 269:64–73

    Article  PubMed  CAS  Google Scholar 

  • Park SM, Kim HS, Choe J, Lee TH (1999) Differential induction of cytokine genes and activation of mitogen-activated protein kinase family by soluble CD40 ligand and TNF in a human follicular dendritic cell line. J Immunol 163:631–638

    PubMed  CAS  Google Scholar 

  • Park S, Kim D, Kaneko S, Szewczyk KM, Nicosia SV, Yu H et al (2005) Molecular cloning and characterization of the human AKT1 promoter uncovers its up-regulation by the Src/Stat3 pathway. J Biol Chem 280:38932–38941

    Article  PubMed  CAS  Google Scholar 

  • Philpott NJ, Nociari M, Elkon KB, Falck-Pedersen E (2004) Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci USA 101:6200–6205

    Article  PubMed  CAS  Google Scholar 

  • Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  • Ramos RN, Chin LS, Dos Santos AP, Bergami-Santos PC, Laginha F, Barbuto JA (2012) Monocyte-derived dendritic cells from breast cancer patients are biased to induce CD4 + CD25 + Foxp3 + regulatory T cells. J Leukoc Biol 92:673–682

    Google Scholar 

  • Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26:273–287

    Article  PubMed  Google Scholar 

  • Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237

    Article  PubMed  CAS  Google Scholar 

  • Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rusnati M et al (2005) Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 175:2788–2792

    PubMed  CAS  Google Scholar 

  • Saito Y, Yanagawa Y, Kikuchi K, Iijima N, Iwabuchi K, Onoe K (2006) Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. J Clin Exp Hematopathology 46:31–36

    Article  Google Scholar 

  • Santini SM, Belardelli F (2003) Advances in the use of dendritic cells and new adjuvants for the development of therapeutic vaccines. Stem Cells 21:495–505

    Article  PubMed  CAS  Google Scholar 

  • Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J et al (2012) Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 209:495–506

    Article  PubMed  CAS  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2, 3-dioxygenase. J Clin Investig 117:2570–2582

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3 + Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    Article  PubMed  CAS  Google Scholar 

  • Sheng KC, Pietersz GA, Wright MD, Apostolopoulos V (2005) Dendritic cells: activation and maturation–applications for cancer immunotherapy. Curr Med Chem 12:1783–1800

    Article  PubMed  CAS  Google Scholar 

  • Sheng KC, Wright MD, Apostolopoulos V (2011) Inflammatory mediators hold the key to dendritic cell suppression and tumor progression. Curr Med Chem 18:5507–5518

    Article  PubMed  CAS  Google Scholar 

  • Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G et al (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356

    Article  PubMed  CAS  Google Scholar 

  • Shurin GV, Ouellette CE, Shurin MR (2012) Regulatory dendritic cells in the tumor immunoenvironment. Cancer Immunol Immunother: CII 61:223–230

    Article  PubMed  Google Scholar 

  • Sigaud S, Evelson P, Gonzalez-Flecha B (2005) H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases. Antioxid Redox Signal 7:6–13

    Article  PubMed  CAS  Google Scholar 

  • Simeone E, Ascierto PA (2012) Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J Immunotoxicol 9:241–247

    Article  PubMed  CAS  Google Scholar 

  • Sinkovics JG, Horvath JC (2000) Vaccination against human cancers (review). Int J Oncol 16:81–96

    PubMed  CAS  Google Scholar 

  • Steinbrink K, Mahnke K, Grabbe S, Enk AH, Jonuleit H (2009) Myeloid dendritic cell: From sentinel of immunity to key player of peripheral tolerance? Hum Immunol 70:289–293

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  PubMed  CAS  Google Scholar 

  • Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B et al (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother: CII 57:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Chin YE, Weisiger E, Malter C, Tawara I, Toubai T et al (2009) Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J Immunol 182:5899–5903

    Article  PubMed  CAS  Google Scholar 

  • Taki T, Taniwaki M (2006) Chromosomal translocations in cancer and their relevance for therapy. Curr Opin Oncol 18:62–68

    Article  PubMed  CAS  Google Scholar 

  • Tanami H, Imoto I, Hirasawa A, Yuki Y, Sonoda I, Inoue J et al (2004) Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene 23:8796–8804

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X (2006) Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 108:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Tassiulas I, Park-Min KH, Hu Y, Kellerman L, Mevorach D, Ivashkiv LB (2007) Apoptotic cells inhibit LPS-induced cytokine and chemokine production and IFN responses in macrophages. Hum Immunol 68:156–164

    Article  PubMed  CAS  Google Scholar 

  • Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC et al (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res Official J Am Assoc Cancer Res 13:1757–1761

    Article  CAS  Google Scholar 

  • van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK et al (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    Article  PubMed  Google Scholar 

  • Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54 (erratum appears in Nat Med 2004 Feb; 10(2):209)

    Google Scholar 

  • Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004b) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006a) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E et al (2006b) Optimizing immunotherapy in multiple myeloma: Restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108:4071–4077

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P et al (2005) Plasmacytoid dendritic cells induce CD8 + regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026

    Article  PubMed  CAS  Google Scholar 

  • West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG et al (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Xia S, Guo Z, Xu X, Yi H, Wang Q, Cao X (2008) Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood 112:3175–3185

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Qian J, Yang J, Wang S, Freeman ME 3rd, Yi Q (2005) Critical roles of Raf/MEK/ERK and PI3 K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol 33:564–572

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Carbone DP (2004) Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE et al (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity.[see comment]. Nat Genet 28:29–35

    PubMed  CAS  Google Scholar 

  • Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81–83

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  PubMed  CAS  Google Scholar 

  • Zaru R, Ronkina N, Gaestel M, Arthur JS, Watts C (2007) The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol 8:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA (2010) IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine 49:294–302

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Tang H, Guo Z, An H, Zhu X, Song W et al (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Falk C, Osen W, Kato M, Schadendorf D, Umansky V (2009) Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clin Cancer Res Official J Am Assoc Cancer Res 15:4382–4390

    Article  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  • Zou GM, Hu WY (2005) LIGHT regulates CD86 expression on dendritic cells through NF-kappaB, but not JNK/AP-1 signal transduction pathway. J Cell Physiol 205:437–443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Y., Yang, J., Yi, Q. (2013). Signaling of Tumor-Induced Immunosuppression of Dendritic Cells. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_14

Download citation

Publish with us

Policies and ethics