Skip to main content

Miniaturized Fluidic Devices and Their Biophotonic Applications

  • Living reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

Miniaturized fluidic devices provide a platform for reaction processes to be scaled down into the milli-, micro-, and nanoscale level. The advantages of using miniaturized devices include the reduction of sample volumes, faster processing rates, automation, portability, low cost, and enhanced detection limit. Bioanalysis, biosensing, bioimaging, and nanoparticle synthesis are some of the important research areas in the biophotonic field which are often burdened by time-consuming reaction processes, requirement of large quantity of samples, and cumbersome equipment with large footprint. As such, scaling down these reaction processes using miniaturized devices will be a promising approach to greatly improve the overall sensitivity of bioanalysis and biosensing and shorten the reaction time for producing high-quality nanoparticles for biophotonic applications. However, scaling down the reaction processes in the fluidic domains poses different technical challenges since the underlying physical phenomena differs from that at the macroscale. In this chapter, we aim to highlight the advancements and challenges in the fabrication of miniaturized devices for biophotonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jürgens M, Mayerhöfer T, Popp J, Lee G, Matthews DL, Wilson BC (2013) Introduction to biophotonics. In: Handbook of biophotonics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  Google Scholar 

  3. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  4. Song P, Hu R, Tng DJH, Yong K-T (2014) Moving towards individualized medicine with microfluidics technology. RSC Adv 4:11499–11511

    Article  Google Scholar 

  5. Prakash S, Yeom J (2014) Introduction, Chapter 1. In: Nanofluidics and microfluidics. William Andrew Publishing, Waltham, pp 1–8

    Chapter  Google Scholar 

  6. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12:3267–3271

    Article  Google Scholar 

  7. Prakash S, Karacor MB, Banerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254

    Article  Google Scholar 

  8. Nguyen NT, Wereley ST (2006) Fundamentals and applications of microfluidics, 2nd edn. Available: http://NTUSG.eblib.com.au/patron/FullRecord.aspx?p=286927

  9. Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62:3443–3454

    Article  Google Scholar 

  10. Baldessari F, Santiago JG (2006) Electrophoresis in nanochannels: brief review and speculation. J Nanobiotechnol 4:1–6

    Article  Google Scholar 

  11. Napoli M, Eijkel JCT, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985

    Article  Google Scholar 

  12. Biswas S, Miller JT, Li Y, Nandakumar K, Kumar CSSR (2012) Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: ultrasmall copper nanoclusters as a case study. Small 8:688–698

    Article  Google Scholar 

  13. Navin CV, Krishna KS, Bovenkamp-Langlois GL, Miller JT, Chattopadhyay S, Shibata T et al (2015) Investigation of the synthesis and characterization of platinum-DMSA nanoparticles using millifluidic chip reactor. Chem Eng J 281:81–86

    Article  Google Scholar 

  14. Damodaran SP, Eberhard S, Boitard L, Rodriguez JG, Wang Y, Bremond N et al (2015) A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii. PLoS One 10, e0118987

    Article  Google Scholar 

  15. Cooper JA Jr, Li W-J, Bailey LO, Hudson SD, Lin-Gibson S, Anseth KS et al (2007) Encapsulated chondrocyte response in a pulsatile flow bioreactor. Acta Biomater 3:13–21

    Article  Google Scholar 

  16. Wang WS, Vanapalli SA (2014) Millifluidics as a simple tool to optimize droplet networks: case study on drop traffic in a bifurcated loop. Biomicrofluidics 8:064111

    Article  Google Scholar 

  17. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  Google Scholar 

  18. Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP (2007) Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7:1114–1120

    Article  Google Scholar 

  19. Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511–4520

    Article  Google Scholar 

  20. Dongeun H, Wei G, Yoko K, James BG, Shuichi T (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26:R73

    Article  Google Scholar 

  21. Prakash S, Pinti M, Bhushan B (2012) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc Lond A Math Phys Eng Sci 370:2269–2303

    Article  Google Scholar 

  22. Srinivasan V, Pamula V, Pollack M, Fair R (2003) A digital microfluidic biosensor for multianalyte detection. In: Micro electro mechanical systems, 2003. MEMS-03 Kyoto. IEEE the sixteenth annual international conference on, 2003, pp 327–330

    Google Scholar 

  23. Maeng J-H, Lee B-C, Ko Y-J, Cho W, Ahn Y, Cho N-G et al (2008) A novel microfluidic biosensor based on an electrical detection system for alpha-fetoprotein. Biosen Bioelectron 23:1319–1325

    Article  Google Scholar 

  24. Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Göttert J et al (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc 130:8633–8641

    Article  Google Scholar 

  25. Hung L-H, Choi KM, Tseng W-Y, Tan Y-C, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178

    Article  Google Scholar 

  26. Zhao C-X, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479

    Article  Google Scholar 

  27. Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  Google Scholar 

  28. Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9:2881–2889

    Article  Google Scholar 

  29. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586

    Article  Google Scholar 

  30. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106:14195–14200

    Article  Google Scholar 

  31. Carlo DD, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918–7925

    Article  Google Scholar 

  32. Wang Z, Han T, Jeon T-J, Park S, Kim SM (2013) Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device. Sens Actuators B 178:683–688

    Article  Google Scholar 

  33. Jacobson SC, Baker JD, Kysela DT, Brun YV (2015) Integrated microfluidic devices for studying aging and adhesion of individual bacteria. Biophys J 108:371a

    Google Scholar 

  34. Harms ZD, Mogensen KB, Nunes PS, Zhou K, Hildenbrand BW, Mitra I et al (2011) Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal Chem 83:9573–9578

    Article  Google Scholar 

  35. Mitra A, Deutsch B, Ignatovich F, Dykes C, Novotny L (2010) Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 4:1305–1312

    Article  Google Scholar 

  36. Hamblin MN, Xuan J, Maynes D, Tolley HD, Belnap DM, Woolley AT et al (2010) Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab Chip 10:173–178

    Article  Google Scholar 

  37. Balducci A, Mao P, Han J, Doyle PS (2006) Double-stranded DNA diffusion in slitlike nanochannels. Macromolecules 39:6273–6281

    Article  Google Scholar 

  38. Reisner W, Morton KJ, Riehn R, Wang YM, Yu Z, Rosen M et al (2005) Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett 94:196101

    Article  Google Scholar 

  39. Walter R, Jonas NP, Robert HA (2012) DNA confinement in nanochannels: physics and biological applications. Rep Prog Phys 75:106601

    Article  Google Scholar 

  40. Lee K-H, Su Y-D, Chen S-J, Tseng F-G, Lee G-B (2007) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosen Bioelectron 23:466–472

    Article  Google Scholar 

  41. Albanese A, Lam AK, Sykes EA, Rocheleau JV, Chan WC (2013) Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun 4:2718

    Article  Google Scholar 

  42. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  Google Scholar 

  43. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee S-H (2015) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15:141–150

    Article  Google Scholar 

  44. van den Berg A, Craighead HG, Yang P (2010) From microfluidic applications to nanofluidic phenomena. Chem Soc Rev 39:899–900

    Article  Google Scholar 

  45. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883

    Article  Google Scholar 

  46. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  Google Scholar 

  47. Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF et al (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci 96:5545–5548

    Article  Google Scholar 

  48. Sparreboom W, van den Berg A, Eijkel JCT (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  49. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  50. Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80:2326–2341

    Article  Google Scholar 

  51. Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77:6772–6781

    Article  Google Scholar 

  52. Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 2. Experiments. Anal Chem 77:6782–6789

    Article  Google Scholar 

  53. Mannion JT, Reccius CH, Cross JD, Craighead HG (2006) Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys J 90:4538–4545

    Article  Google Scholar 

  54. Mawatari K, Kubota S, Xu Y, Priest C, Sedev R, Ralston J et al (2012) Femtoliter droplet handling in nanofluidic channels: a laplace nanovalve. Anal Chem 84:10812–10816

    Article  Google Scholar 

  55. Song P, Tng DJH, Hu R, Lin G, Meng E, Yong K-T (2013) An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Adv Healthcare Mater 2:1170–1178

    Article  Google Scholar 

  56. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878

    Article  Google Scholar 

  57. Morteza A, John TWY, Mehdi S (2011) System integration in microfluidics. In: Microfluidics and nanofluidics handbook. CRC Press, Boca Raton, pp 269–286

    Google Scholar 

  58. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942

    Article  Google Scholar 

  59. Nguyen N-T, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392

    Article  Google Scholar 

  60. Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739

    Article  Google Scholar 

  61. Tas NR, Berenschot JW, Lammerink TSJ, Elwenspoek M, van den Berg A (2002) Nanofluidic bubble pump using surface tension directed gas injection. Anal Chem 74:2224–2227

    Article  Google Scholar 

  62. Ouellet E, Lausted C, Lin T, Yang CWT, Hood L, Lagally ET (2010) Parallel microfluidic surface plasmon resonance imaging arrays. Lab Chip 10:581–588

    Article  Google Scholar 

  63. Ouyang H, Xia Z, Zhe J (2010) Voltage-controlled flow regulating in nanofluidic channels with charged polymer brushes. Microfluid Nanofluid 9:915–922

    Article  Google Scholar 

  64. Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263

    Article  Google Scholar 

  65. Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5:739–747

    Article  Google Scholar 

  66. Bothe D, Stemich C, Warnecke H-J (2006) Fluid mixing in a T-shaped micro-mixer. Chem Eng Sci 61:2950–2958

    Article  Google Scholar 

  67. Wong SH, Ward MCL, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B 100:359–379

    Article  Google Scholar 

  68. Che-Hsin L, Chien-Hsiung T, Lung-Ming F (2005) A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. J Micromech Microeng 15:935

    Article  Google Scholar 

  69. Long M, Sprague MA, Grimes AA, Rich BD, Khine M (2009) A simple three-dimensional vortex micromixer. Appl Phys Lett 94:133501

    Article  Google Scholar 

  70. Ye Z, Li S, Zhou B, Hui YS, Shen R, Wen W (2014) Nanofluidic mixing via hybrid surface. Appl Phys Lett 105:163501

    Article  Google Scholar 

  71. Yu S, Jeon T-J, Kim SM (2012) Active micromixer using electrokinetic effects in the micro/nanochannel junction. Chem Eng J 197:289–294

    Article  Google Scholar 

  72. Kim D, Raj A, Zhu L, Masel RI, Shannon MA (2008) Non-equilibrium electrokinetic micro/nano fluidic mixer. Lab Chip 8:625–628

    Article  Google Scholar 

  73. Liang-Hsuan L, Kee Suk R, Chang L (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11:462–469

    Article  Google Scholar 

  74. Lei KF (2015) Materials and fabrication techniques for nano- and microfluidic devices, Chapter 1. In: Microfluidics in detection science: lab-on-a-chip technologies. The Royal Society of Chemistry, Cambridge, pp 1–28

    Google Scholar 

  75. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406

    Article  Google Scholar 

  76. Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505

    Article  Google Scholar 

  77. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  Google Scholar 

  78. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  79. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  Google Scholar 

  80. Tsuda S, Jaffery H, Doran D, Hezwani M, Robbins PJ, Yoshida M et al (2015) Customizable 3D printed ‘plug and play’ millifluidic devices for programmable fluidics. PLoS One 10, e0141640

    Article  Google Scholar 

  81. Duan C, Wang W, Xie Q (2013) Review article: fabrication of nanofluidic devices. Biomicrofluidics 7:026501

    Article  Google Scholar 

  82. Bocquet L, Tabeling P (2014) Physics and technological aspects of nanofluidics. Lab Chip 14:3143–3158

    Article  Google Scholar 

  83. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513

    Article  Google Scholar 

  84. Li D (2008) Nanochannel fabrication. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer US, Boston, pp 1409–1414

    Chapter  Google Scholar 

  85. Chou SY, Krauss PR, Renstrom PJ (1996) Nanoimprint lithography. J Vac Sci Technol B 14:4129–4133

    Article  Google Scholar 

  86. Kim Y, Kim KS, Kounovsky KL, Chang R, Jung GY, dePablo JJ et al (2011) Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 11:1721–1729

    Article  Google Scholar 

  87. Marie R, Kristensen A (2012) Nanofluidic devices towards single DNA molecule sequence mapping. J Biophotonics 5:673–686

    Article  Google Scholar 

  88. Cipriany BR, Zhao R, Murphy PJ, Levy SL, Tan CP, Craighead HG et al (2010) Single molecule epigenetic analysis in a nanofluidic channel. Anal Chem 82:2480–2487

    Article  Google Scholar 

  89. Tegenfeldt JO, Prinz C, Cao H, Chou S, Reisner WW, Riehn R et al (2004) From the cover: the dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci U S A 101:10979–10983

    Article  Google Scholar 

  90. Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M (2010) Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res 38, e177

    Article  Google Scholar 

  91. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD et al (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30:771–776

    Article  Google Scholar 

  92. Friedrich SM, Zec HC, Wang TH (2016) Analysis of single nucleic acid molecules in micro- and nano-fluidics. Lab Chip 16:790–811

    Article  Google Scholar 

  93. Miller JM (2013) Whole-genome mapping: a new paradigm in strain-typing technology. J Clin Microbiol 51:1066–1070

    Article  Google Scholar 

  94. Gupta A, Place M, Goldstein S, Sarkar D, Zhou S, Potamousis K et al (2015) Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc Natl Acad Sci U S A 112:7689–7694

    Article  Google Scholar 

  95. Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO et al (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci U S A 107:13294–13299

    Article  Google Scholar 

  96. Nyberg LK, Persson F, Berg J, Bergstrom J, Fransson E, Olsson L et al (2012) A single-step competitive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun 417:404–408

    Article  Google Scholar 

  97. Jo K, Dhingra DM, Odijk T, de Pablo JJ, Graham MD, Runnheim R et al (2007) A single-molecule barcoding system using nanoslits for DNA analysis. Proc Natl Acad Sci U S A 104:2673–2678

    Article  Google Scholar 

  98. Riley MC, Kirkup BC, Johnson JD, Lesho EP, Ockenhouse CF (2011) Rapid whole genome optical mapping of Plasmodium falciparum. Malar J 10:1–8

    Article  Google Scholar 

  99. Welch RL, Sladek R, Dewar K, Reisner WW (2012) Denaturation mapping of Saccharomyces cerevisiae. Lab Chip 12:3314–3321

    Article  Google Scholar 

  100. Zhu F, Skommer J, Macdonald NP, Friedrich T, Kaslin J, Wlodkowic D (2015) Three-dimensional printed millifluidic devices for zebrafish embryo tests. Biomicrofluidics 9:046502

    Article  Google Scholar 

  101. Li Y, Yang F, Chen Z, Shi L, Zhang B, Pan J et al (2014) Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity. PLoS One 9, e94792

    Article  Google Scholar 

  102. Baraban L, Bertholle F, Salverda MLM, Bremond N, Panizza P, Baudry J et al (2011) Millifluidic droplet analyser for microbiology. Lab Chip 11:4057–4062

    Article  Google Scholar 

  103. Boitard L, Cottinet D, Bremond N, Baudry J, Bibette J (2015) Growing microbes in millifluidic droplets. Eng Life Sci 15:318–326

    Article  Google Scholar 

  104. Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14:1044–1059

    Article  Google Scholar 

  105. Yao B, Luo G-A, Feng X, Wang W, Chen L-X, Wang Y-M (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4:603–607

    Article  Google Scholar 

  106. Zhu HY, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647

    Article  Google Scholar 

  107. Mao X, Lin S-CS, Dong C, Huang TJ (2009) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–1589

    Article  Google Scholar 

  108. Cheng XH, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L et al (2007) A microfluidic device for practical label-free CD4 + T cell counting of HIV-infected subjects. Lab Chip 7:170–178

    Article  Google Scholar 

  109. Rodriguez WR, Christodoulides N, Floriano PN, Graham S, Mohanty S, Dixon M et al (2005) A microchip CD4 counting method for HIV monitoring in resource-poor settings. Plos Med 2:663–672

    Article  Google Scholar 

  110. Moon S, Keles HO, Ozcan A, Khademhosseini A, Haeggstrom E, Kuritzkes D et al (2009) Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron 24:3208–3214

    Article  Google Scholar 

  111. Patra B, Peng C-C, Liao W-H, Lee C-H, Tung Y-C (2016) Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep 6:21061

    Article  Google Scholar 

  112. Simonnet C, Groisman A (2006) High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal Chem 78:5653–5663

    Article  Google Scholar 

  113. Strohm EM, Gnyawali V, Van De Vondervoort M, Daghighi Y, Tsai SS, Kolios MC (2016) Classification of biological cells using a sound wave based flow cytometer. In: SPIE BiOS, 9708:2016, pp 97081A–97081A-6

    Google Scholar 

  114. Mao X, Nawaz AA, Lin S-CS, Lapsley MI, Zhao Y, McCoy JP et al (2012) An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics 6:024113–024113-9

    Article  Google Scholar 

  115. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685–691

    Article  Google Scholar 

  116. Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10:27–29

    Article  Google Scholar 

  117. Tan S, Yobas L, Lee G, Ong C, Lim C (2009) Microdevice for trapping circulating tumor cells for cancer diagnostics. In: 13th international conference on biomedical engineering, 2009, pp 774–777

    Google Scholar 

  118. Tan SJ, Lakshmi RL, Chen P, Lim W-T, Yobas L, Lim CT (2010) Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosen Bioelectron 26:1701–1705

    Article  Google Scholar 

  119. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259

    Google Scholar 

  120. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK et al (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:128–137

    Article  Google Scholar 

  121. Turetsky A, Lee K, Song J, Giedt RJ, Kim E, Kovach AE et al (2015) On chip analysis of CNS lymphoma in cerebrospinal fluid. Theranostics 5:796

    Article  Google Scholar 

  122. Guo J, Ma X, Menon NV, Li CM, Zhao Y, Kang Y (2015) Dual fluorescence-activated study of tumor cell apoptosis by an optofluidic system. IEEE J Sel Top Quantum Electron 21:392–398

    Google Scholar 

  123. Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12:187–195

    Article  Google Scholar 

  124. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  125. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280

    Article  Google Scholar 

  126. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223

    Article  Google Scholar 

  127. Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F et al (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649

    Article  Google Scholar 

  128. Li M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. J Micromech Microeng 22:095001

    Article  Google Scholar 

  129. Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP et al (2009) Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip 9:1942–1950

    Article  Google Scholar 

  130. Ozcan A, Demirci U (2008) Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8:98–106

    Article  Google Scholar 

  131. Cui X, Lee LM, Heng X, Zhong W, Sternberg PW, Psaltis D et al (2008) Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc Natl Acad Sci 105:10670–10675

    Article  Google Scholar 

  132. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792

    Article  Google Scholar 

  133. Lin C-C, Wang J-H, Wu H-W, Lee G-B (2010) Microfluidic immunoassays. J Assoc Lab Autom 15:253–274

    Article  Google Scholar 

  134. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  Google Scholar 

  135. Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosen Bioelectron 23:151–160

    Article  Google Scholar 

  136. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B 121:158–177

    Article  Google Scholar 

  137. Kim J (2012) Joining plasmonics with microfluidics: from convenience to inevitability. Lab Chip 12:3611–3623

    Article  Google Scholar 

  138. Luo Y, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8:694–700

    Article  Google Scholar 

  139. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251

    Article  Google Scholar 

  140. Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, Vlaminck I et al (2009) Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed Microdevices 11:893–901

    Article  Google Scholar 

  141. Aćimović SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J et al (2014) LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 14:2636–2641

    Article  Google Scholar 

  142. Huang C, Ye J, Wang S, Stakenborg T, Lagae L (2012) Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Appl Phys Lett 100:173114

    Article  Google Scholar 

  143. Lee S-W, Lee K-S, Ahn J, Lee J-J, Kim M-G, Shin Y-B (2011) Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5:897–904

    Article  Google Scholar 

  144. Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J et al (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–4181

    Article  Google Scholar 

  145. De Leebeeck A, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100

    Article  Google Scholar 

  146. Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D et al (2009) Attomolar protein detection using in-hole surface plasmon resonance. J Am Chem Soc 131:436–437

    Article  Google Scholar 

  147. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG et al (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311

    Article  Google Scholar 

  148. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  Google Scholar 

  149. Martín-Moreno L, García-Vidal FJ (2004) Optical transmission through circular hole arrays in optically thick metal films. Opt Express 12:3619–3628

    Article  Google Scholar 

  150. Yanik AA, Huang M, Artar A, Chang T-Y, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96:021101

    Article  Google Scholar 

  151. Suzuki A, Kondoh J, Matsui Y, Shiokawa S, Suzuki K (2005) Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes. Sens Actuators B 106:383–387

    Article  Google Scholar 

  152. Wang Y-C, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8:392–394

    Article  Google Scholar 

  153. Sepúlveda B, del Río JS, Moreno M, Blanco FJ, Mayora K, Domínguez C et al (2006) Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. J Opt A Pure Appl Opt 8:S561

    Article  Google Scholar 

  154. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  155. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343

    Article  Google Scholar 

  156. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854, 1950/11/01

    Article  Google Scholar 

  157. Lohse SE, Eller JR, Sivapalan ST, Plews MR, Murphy CJ (2013) A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 7:4135–4150

    Article  Google Scholar 

  158. Sai Krishna K, Navin CV, Biswas S, Singh V, Ham K, Bovenkamp GL et al (2013) Millifluidics for time-resolved mapping of the growth of gold nanostructures. J Am Chem Soc 135:5450–5456

    Article  Google Scholar 

  159. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485

    Article  Google Scholar 

  160. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  Google Scholar 

  161. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  Google Scholar 

  162. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  163. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L et al (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124:4586–4594

    Article  Google Scholar 

  164. Gonda K, Watanabe TM, Ohuchi N, Higuchi H (2010) In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem 285:2750–2757

    Article  Google Scholar 

  165. Hu S, Zeng S, Zhang B, Yang C, Song P, Hang Danny TJ et al (2014) Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging. Analyst 139:4681–4690

    Article  Google Scholar 

  166. Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ, Mokarram N, Hojjati-Emami S, Dashtimoghadam E et al (2014) On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics. Adv Funct Mater 24:432–441

    Article  Google Scholar 

  167. Prabaharan M (2012) Chitosan and its derivatives as promising drug delivery carriers. Momentum Press, New York

    Book  Google Scholar 

  168. Chiu Y-L, Ho Y-C, Chen Y-M, Peng S-F, Ke C-J, Chen K-J et al (2010) The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release 146:152–159

    Article  Google Scholar 

  169. Majedi FS, Hasani-Sadrabadi MM, Hojjati Emami S, Shokrgozar MA, VanDersarl JJ, Dashtimoghadam E et al (2013) Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip 13:204–207

    Article  Google Scholar 

  170. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M et al (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817

    Article  Google Scholar 

  171. Huang X, El-Sayed IH, El-Sayed MA (2010) Applications of gold nanorods for cancer imaging and photothermal therapy. In: Grobmyer RS, Moudgil MB (eds) Cancer nanotechnology: methods and protocols. Humana Press, Totowa, pp 343–357

    Chapter  Google Scholar 

  172. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  173. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R et al (2010) High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–793

    Article  Google Scholar 

  174. Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M et al (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23:3542–3547

    Article  Google Scholar 

  175. Mou J, Li P, Liu C, Xu H, Song L, Wang J et al (2015) Ultrasmall Cu2−xS nanodots for highly efficient photoacoustic imaging-guided photothermal therapy. Small 11:2275–2283

    Article  Google Scholar 

  176. Cheung T-L, Hong L, Rao N, Yang C, Wang L, Lai WJ et al (2016) The non-aqueous synthesis of shape controllable Cu2−xS plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating. Nanoscale 8:6609–6622

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alana Mauluidy Soehartono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Soehartono, A.M. et al. (2016). Miniaturized Fluidic Devices and Their Biophotonic Applications. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6174-2_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6174-2_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6174-2

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics