Skip to main content

Tetraspanins and Immunity

  • Chapter
  • First Online:
Tetraspanins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

Studies of tetraspanins in cells of the immune system were the first to reveal the interactions of tetraspanins with each other and with their associated molecular partners. The extensive knowledge of immune cell subsets, the functionally distinct molecules expressed by these cells, and the availability of specific antibody reagents has had a major impact on our understanding of how tetraspanins assemble in cell membranes, and how they affect the function of their partners. Here we briefly introduce the various cell types that partake in innate and adaptive immune functions. We then highlight the role of tetraspanins in both arms of the immune system. Tetraspanins influence immune cell migration and antigen presentation. Moreover, they are present on both sides of immune synapses, namely, on antigen presenting cells and on T cells. Indeed, deficiency of specific tetraspanins in both mice and humans results in immune impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cells

BCR:

B cell receptor

C:

Constant region gene

CTL:

Cytotoxic T cells

CVID:

Variable immunodeficiency disorder

D:

Diversity region gene

DCs:

Dendritic cells

FO:

Follicular

FRET:

Fluorescence resonance energy transfer

ICAM-1:

Intracellular adhesion molecule-1

IS:

Immune synapse

J:

Joining region gene

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility molecules

MIICs:

MHC class II enriched compartments

MZ:

Marginal zone

NK:

Natural killer cells

PAMPs:

Pathogen associated molecular patterns

PRR:

Pattern recognition receptors

TCR:

T cell receptor

TEM:

Tetraspanin-enriched microdomains

Th:

T helper cells

TLR:

Toll-like receptor

Treg:

Regulatory T cells

V:

Variable region genes

VCAM:

Vascular cell adhesion molecule-1

References

  • Anderson HA, Hiltbold EM, Roche PA (2000) Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1:156–162

    PubMed  CAS  Google Scholar 

  • Angelisova P, Hilgert I, Horejsi V (1994) Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogen 39:249–256

    CAS  Google Scholar 

  • Artavanis-Tsakonas K, Love JC, Ploegh HL, Vyas JM (2006) Recruitment of CD63 to Cryptococcus neoformans phagosomes requires acidification. Proc Natl Acad Sci USA 103:15945–15950, PMCID: 1635107

    PubMed  CAS  Google Scholar 

  • Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861

    PubMed  CAS  Google Scholar 

  • Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183:527–542, PMCID: 2575792

    PubMed  CAS  Google Scholar 

  • Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M, Romero M, Perdiguer L, Delgado M, Orfao A, Lazo PA (2005a) Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 19:1376–1383

    PubMed  CAS  Google Scholar 

  • Barrena S, Almeida J, Yunta M, Lopez A, Diaz-Mediavilla J, Orfao A, Lazo PA (2005b) Discrimination of biclonal B-cell chronic lymphoproliferative neoplasias by tetraspanin antigen expression. Leukemia 19:1708–1709

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    PubMed  CAS  Google Scholar 

  • Boniface JJ, Rabinowitz JD, Wulfing C, Hampl J, Reich Z, Altman JD, Kantor RM, Beeson C, McConnell HM, Davis MM (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9:459–466

    PubMed  CAS  Google Scholar 

  • Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-­dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    PubMed  CAS  Google Scholar 

  • Cariappa A, Shoham T, Liu H, Levy S, Boucheix C, Pillai S (2005) The CD9 tetraspanin is not required for the development of peripheral B cells or for humoral immunity. J Immunol 175:2925–2930

    PubMed  CAS  Google Scholar 

  • Cherukuri A, Shoham T, Sohn HW, Levy S, Brooks S, Carter R, Pierce SK (2004) The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol 172:370–380

    PubMed  CAS  Google Scholar 

  • Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250

    PubMed  CAS  Google Scholar 

  • Crotta S, Ronconi V, Ulivieri C, Baldari CT, Valiante NM, Abrignani S, Wack A (2006) Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Eur J Immunol 36:919–929

    PubMed  CAS  Google Scholar 

  • Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    PubMed  CAS  Google Scholar 

  • De Bruyne E, Bos TJ, Asosingh K, Vande Broek I, Menu E, Van Valckenborgh E, Atadja P, Coiteux V, Leleu X, Thielemans K, Van Camp B, Vanderkerken K, Van Riet I (2008) Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival. Clin Cancer Res 14:2918–2926

    PubMed  Google Scholar 

  • de la Fuente H, Mittelbrunn M, Sanchez-Martin L, Vicente-Manzanares M, Lamana A, Pardi R, Cabanas C, Sanchez-Madrid F (2005) Synaptic clusters of MHC class II molecules induced on DCs by adhesion molecule-mediated initial T-cell scanning. Mol Biol Cell 16:3314–3322, PMCID: 1165413

    PubMed  Google Scholar 

  • Delaguillaumie A, Lagaudriere-Gesbert C, Popoff MR, Conjeaud H (2002) Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J Cell Sci 115:433–443

    PubMed  CAS  Google Scholar 

  • Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117:5269–5282

    PubMed  CAS  Google Scholar 

  • Deng J, Yeung VP, Tsitoura D, DeKruyff RH, Umetsu DT, Levy S (2000) Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J Immunol 165:5054–5061

    PubMed  CAS  Google Scholar 

  • Deng J, Dekruyff RH, Freeman GJ, Umetsu DT, Levy S (2002) Critical role of CD81 in cognate T-B cell interactions leading to Th2 responses. Int Immunol 14:513–523

    PubMed  CAS  Google Scholar 

  • Drucker L, Tohami T, Tartakover-Matalon S, Zismanov V, Shapiro H, Radnay J, Lishner M (2006) Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 27:197–204

    PubMed  CAS  Google Scholar 

  • Engering A, Kuhn L, Fluitsma D, Hoefsmit E, Pieters J (2003) Differential post-translational modification of CD63 molecules during maturation of human dendritic cells. Eur J Biochem 270:2412–2420

    PubMed  CAS  Google Scholar 

  • Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    PubMed  CAS  Google Scholar 

  • Fearon DT, Carroll MC (2000) Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 18:393–422

    PubMed  CAS  Google Scholar 

  • Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J Biol Chem 278:51203–51212

    PubMed  CAS  Google Scholar 

  • Figdor CG, van Spriel AB (2010) Fungal pattern-recognition receptors and tetraspanins: partners on antigen-presenting cells. Trends Immunol 31:91–96

    PubMed  CAS  Google Scholar 

  • Gartlan KH, Belz GT, Tarrant JM, Minigo G, Katsara M, Sheng KC, Sofi M, van Spriel AB, Apostolopoulos V, Plebanski M, Robb L, Wright MD (2010) A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity. J Immunol 185:3158–3166

    PubMed  CAS  Google Scholar 

  • Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006) Impaired “outside-in” integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108:1911–1918

    PubMed  CAS  Google Scholar 

  • Hammond C, Denzin LK, Pan M, Griffith JM, Geuze HJ, Cresswell P (1998) The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM and -DO molecules. J Immunol 161:3282–3291

    PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    PubMed  CAS  Google Scholar 

  • Hoorn T, Paul P, Janssen L, Janssen H, Neefjes J (2012) Dynamics within tetraspanin pairs affect MHC class II expression. J Cell Sci 125:328–339

    PubMed  Google Scholar 

  • Huby R, Chowdhury F, Lombardi G (2001) Rafts for antigen presentation? Nat Immunol 2:3

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    PubMed  CAS  Google Scholar 

  • Iwata S, Kobayashi H, Miyake-Nishijima R, Sasaki T, Souta-Kuribara A, Nori M, Hosono O, Kawasaki H, Tanaka H, Morimoto C (2002) Distinctive signaling pathways through CD82 and beta1 integrins in human T cells. Eur J Immunol 32:1328–1337

    PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Jenei A, Varga S, Bene L, Matyus L, Bodnar A, Bacso Z, Pieri C, Gaspar R Jr, Farkas T, Damjanovich S (1997) HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 94:7269–7274

    PubMed  CAS  Google Scholar 

  • Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    PubMed  Google Scholar 

  • Karamatic Crew V, Poole J, Long S, Warke N, Colavecchia C, Burton N, Moulds M, Schlanser G, Wilson L, Noumsi G, Moulds JM, Moulds JJ, Daniels G (2008) Two MER2-negative individuals with the same novel CD151 mutation and evidence for clinical significance of anti-MER2. Transfusion 48:1912–1916

    PubMed  Google Scholar 

  • Kijimoto-Ochiai S, Noguchi A, Ohnishi T, Araki Y (2004) Complex formation of CD23/surface immunoglobulin and CD23/CD81/MHC class II on an EBV-transformed human B cell line and inferable role of tetraspanin. Microbiol Immunol 48:417–426

    PubMed  Google Scholar 

  • Knobeloch KP, Wright MD, Ochsenbein AF, Liesenfeld O, Lohler J, Zinkernagel RM, Horak I, Orinska Z (2000) Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol Cell Biol 20:5363–5369

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Hosono O, Iwata S, Kawasaki H, Kuwana M, Tanaka H, Dang NH, Morimoto C (2004) The tetraspanin CD9 is preferentially expressed on the human CD4(+)CD45RA+ naive T cell population and is involved in T cell activation. Clin Exp Immunol 137:101–108, PMCID: PMC1809091

    PubMed  CAS  Google Scholar 

  • Kramer B, Schulte D, Korner C, Zwank C, Hartmann A, Michalk M, Sohne J, Langhans B, Nischalke HD, Coenen M, Mohl C, Vogt A, Hennenberg M, Sauerbruch T, Spengler U, Nattermann J (2009) Regulation of NK cell trafficking by CD81. Eur J Immunol 39:3447–3458

    PubMed  Google Scholar 

  • Kropshofer H, Spindeldreher S, Rohn TA, Platania N, Grygar C, Daniel N, Wolpl A, Langen H, Horejsi V, Vogt AB (2002) Tetraspan microdomains distinct from lipid rafts enrich select peptide-­MHC class II complexes. Nat Immunol 3:61–68

    PubMed  CAS  Google Scholar 

  • Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boquet P, Boucheix C, Conjeaud H, Rubinstein E (1997) Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol 182:105–112

    PubMed  CAS  Google Scholar 

  • Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME (2003) Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100:7616–7621, PMCID: PMC164635

    PubMed  CAS  Google Scholar 

  • Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375

    PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  • Ma Z, Sharp KA, Janmey PA, Finkel TH (2008a) Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol 6:e43, PMCID: 2253636

    PubMed  Google Scholar 

  • Ma Z, Janmey PA, Finkel TH (2008b) The receptor deformation model of TCR triggering. FASEB J 22:1002–1008, PMCID: 2679516

    PubMed  CAS  Google Scholar 

  • Maecker HT (2003) Human CD81 directly enhances Th1 and Th2 cell activation, but preferentially induces proliferation of Th2 cells upon long-term stimulation. BMC Immunol 4:1, PMCID: PMC151668

    PubMed  Google Scholar 

  • Maecker HT, Levy S (1997) Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 185:1505–1510

    PubMed  CAS  Google Scholar 

  • Mantegazza AR, Barrio MM, Moutel S, Bover L, Weck M, Brossart P, Teillaud JL, Mordoh J (2004) CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104:1183–1190

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    PubMed  CAS  Google Scholar 

  • Meyer-Wentrup F, Figdor CG, Ansems M, Brossart P, Wright MD, Adema GJ, van Spriel AB (2007) Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J Immunol 178:154–162

    PubMed  CAS  Google Scholar 

  • Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F (2002) Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol 169:6691–6695

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Muller U, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 16:4217–4225

    PubMed  CAS  Google Scholar 

  • Mollinedo F, Fontan G, Barasoain I, Lazo PA (1997) Recurrent infectious diseases in human CD53 deficiency. Clin Diagn Lab Immunol 4:229–231, PMCID: PMC170508

    PubMed  CAS  Google Scholar 

  • Muzzafar T, Medeiros LJ, Wang SA, Brahmandam A, Thomas DA, Jorgensen JL (2009) Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: utility in detection of minimal residual disease by flow cytometry. Am J Clin Pathol 132:692–698

    PubMed  Google Scholar 

  • Nojima Y, Hirose T, Tachibana K, Tanaka T, Shi L, Doshen J, Freeman GJ, Schlossman SF, Morimoto C (1993) The 4F9 antigen is a member of the tetra spans transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol 152:249–260

    PubMed  CAS  Google Scholar 

  • Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M (2006) Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 173:795–807

    PubMed  CAS  Google Scholar 

  • Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566

    PubMed  CAS  Google Scholar 

  • Oren R, Takahashi S, Doss C, Levy R, Levy S (1990) TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10:4007–4015

    PubMed  CAS  Google Scholar 

  • Petersen SH, Odintsova E, Haigh TA, Rickinson AB, Taylor GS, Berditchevski F (2011) The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur J Immunol 41:2556–2561

    PubMed  CAS  Google Scholar 

  • Pfeiffer A, Bottcher A, Orso E, Kapinsky M, Nagy P, Bodnar A, Spreitzer I, Liebisch G, Drobnik W, Gempel K, Horn M, Holmer S, Hartung T, Multhoff G, Schutz G, Schindler H, Ulmer AJ, Heine H, Stelter F, Schutt C, Rothe G, Szollosi J, Damjanovich S, Schmitz G (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164

    PubMed  CAS  Google Scholar 

  • Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, Knapp W (2004) CD63 as an activation-linked T cell costimulatory element. J Immunol 173:6000–6008

    PubMed  CAS  Google Scholar 

  • Poloso NJ, Denzin LK, Roche PA (2006) CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain. J Immunol 177:5451–5458

    PubMed  CAS  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592

    PubMed  CAS  Google Scholar 

  • Rocha N, Neefjes J (2008) MHC class II molecules on the move for successful antigen presentation. EMBO J 27:1–5, PMCID: 2206127

    PubMed  CAS  Google Scholar 

  • Rops AL, Figdor CG, van der Schaaf A, Tamboer WP, Bakker MA, Berden JH, Dijkman HB, Steenbergen EJ, van der Vlag J, van Spriel AB (2010) The tetraspanin CD37 protects against glomerular IgA deposition and renal pathology. Am J Pathol 176:2188–2197, PMCID: 2861084

    PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour F, Lagaudriere-Gesbert C, Billard M, Conjeaud H, Boucheix C (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    PubMed  CAS  Google Scholar 

  • Sagi Y, Landrigan A, Levy R, Levy S (2012) Complementary costimulation of human T-cell subpopulations by cluster of differentiation 28 (CD28) and CD81. Proc Natl Acad Sci USA 109:1613–1618, PMCID: PMC3277132

    PubMed  CAS  Google Scholar 

  • Sanyal M, Fernandez R, Levy S (2009) Enhanced B cell activation in the absence of CD81. Int Immunol 21:1225–1237

    PubMed  CAS  Google Scholar 

  • Schick MR, Levy S (1993) The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol 151:4090–4097

    PubMed  CAS  Google Scholar 

  • Schroder J, Lullmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schroder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094, PMCID: 2643809

    PubMed  Google Scholar 

  • Secrist H, Levy S, DeKruyff RH, Umetsu DT (1996) Ligation of TAPA-1 (CD81) or major histocompatibility complex class II in co-cultures of human B and T lymphocytes enhances interleukin-­4 synthesis by antigen-specific CD4+ T cells. Eur J Immunol 26:1435–1442

    PubMed  CAS  Google Scholar 

  • Serra A, Nuti S, Tavarini S, Sammicheli C, Rosa D, Saletti G, Soldaini E, Abrignani S, Wack A (2008) Coligation of the hepatitis C virus receptor CD81 with CD28 primes naive T lymphocytes to acquire type 2 effector function. J Immunol 181:174–185

    PubMed  CAS  Google Scholar 

  • Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L, Wright MD (2009) Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-­stimulation by DC. Eur J Immunol 39:50–55

    PubMed  CAS  Google Scholar 

  • Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S (2003) The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol 171:4062–4072

    PubMed  CAS  Google Scholar 

  • Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S (2006) Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol 26:1373–1385, PMCID: 1367195

    PubMed  CAS  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    PubMed  CAS  Google Scholar 

  • Soldaini E, Wack A, D’Oro U, Nuti S, Ulivieri C, Baldari CT, Abrignani S (2003) T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck. Eur J Immunol 33:455–464

    PubMed  CAS  Google Scholar 

  • Suzuki M, Tachibana I, Takeda Y, He P, Minami S, Iwasaki T, Kida H, Goya S, Kijima T, Yoshida M, Kumagai T, Osaki T, Kawase I (2009) Tetraspanin CD9 negatively regulates lipopolysaccharide-­induced macrophage activation and lung inflammation. J Immunol 182:6485–6493

    PubMed  CAS  Google Scholar 

  • Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and teraspan molecules (CD53, CD81 and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946

    PubMed  CAS  Google Scholar 

  • Tai XG, Yashiro Y, Abe R, Toyooka K, Wood CR, Morris J, Long A, Ono S, Kobayashi M, Hamaoka T, Neben S, Fujiwara H (1996) A role for CD9 molecules in T cell activation. J Exp Med 184:753–758, PMCID: PMC2192734

    PubMed  CAS  Google Scholar 

  • Tarrant JM, Groom J, Metcalf D, Li R, Borobokas B, Wright MD, Tarlinton D, Robb L (2002) The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol Cell Biol 22:5006–5018, PMCID: 139789

    PubMed  CAS  Google Scholar 

  • Tarrant JM, Robb L, van Spriel AB, Wright MD (2003) Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 24:610–617

    PubMed  CAS  Google Scholar 

  • Tohami T, Drucker L, Radnay J, Shapira H, Lishner M (2004) Expression of tetraspanins in peripheral blood leukocytes: a comparison between normal and infectious conditions. Tissue Antigens 64:235–242

    PubMed  CAS  Google Scholar 

  • Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K (2004) Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J 381:527–536, PMCID: 1133861

    PubMed  CAS  Google Scholar 

  • Tseng CT, Miskovsky E, Klimpel GR (2001) Crosslinking CD81 results in activation of TCRgammadelta T cells. Cell Immunol 207:19–27

    PubMed  CAS  Google Scholar 

  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849

    PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104:234–239

    PubMed  CAS  Google Scholar 

  • van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H, Orinska Z, Knobeloch KP, Plebanski M, Wright MD (2004) A regulatory role for CD37 in T cell proliferation. J Immunol 172:2953–2961

    PubMed  Google Scholar 

  • van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M (2010) CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 120:1265–1274

    PubMed  Google Scholar 

  • VanCompernolle SE, Levy S, Todd SC (2001) Anti-CD81 activates LFA-1 on T cells and promotes T cell-B cell collaboration. Eur J Immunol 31:823–831

    PubMed  CAS  Google Scholar 

  • Vyas JM, Kim YM, Artavanis-Tsakonas K, Love JC, Van der Veen AG, Ploegh HL (2007) Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. J Immunol 178:7199–7210, PMCID: 2806821

    PubMed  CAS  Google Scholar 

  • Wack A, Soldaini E, Tseng C, Nuti S, Klimpel G, Abrignani S (2001) Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur J Immunol 31:166–175

    PubMed  CAS  Google Scholar 

  • Williams AF, Beyers AD (1992) T-cell receptors. At grips with interactions. Nature 356:746–747

    PubMed  CAS  Google Scholar 

  • Witherden DA, Boismenu R, Havran WL (2000) CD81 and CD28 costimulate T cells through distinct pathways. J Immunol 165:1902–1909

    PubMed  CAS  Google Scholar 

  • Won WJ, Kearney JF (2002) CD9 is a unique marker for marginal zone B cells, B1 cells, and plasma cells in mice. J Immunol 168:5605–5611

    PubMed  CAS  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4- kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    PubMed  CAS  Google Scholar 

  • Zhou XY, Yashiro-Ohtani Y, Nakahira M, Park WR, Abe R, Hamaoka T, Naramura M, Gu H, Fujiwara H (2002) Molecular mechanisms underlying differential contribution of CD28 versus non-­CD28 costimulatory molecules to IL-2 promoter activation. J Immunol 168:3847–3854

    PubMed  CAS  Google Scholar 

  • Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N, Gelin C (2005) MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 106:3074–3081

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mark Wright is the recipient of grants from the Australian National Health and Medical Research Council, and the Anti Cancer Council of Victoria. Shoshana Levy is the recipient of grants from the Leukemia Lymphoma Society and the National Institutes of Health. The authors thank Annemiek van Spriel, Po Ki Ho and Frank Alderuccio for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshana Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wright, M.D., Levy, S. (2013). Tetraspanins and Immunity. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_10

Download citation

Publish with us

Policies and ethics