Skip to main content

Effects of Radiofrequency-Modulated Electromagnetic Fields on Proteome

  • Chapter
  • First Online:
Radiation Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 990))

Abstract

Proteomics, the science that examines the repertoire of proteins present in an organism using both high-throughput and low-throughput techniques, might give a better understanding of the functional processes ongoing in cells than genomics or transcriptomics, because proteins are the molecules that directly regulate physiological processes. Not all changes in gene expression are necessarily reflected in the proteome. Therefore, using proteomics approaches to study the effects of RF-EMF might provide information about potential biological and health effects. Especially that the RF-EMF used in wireless communication devices has very low energy and is unable to directly induce gene mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leszczynski D, Joenväärä S (2001) Proteomics: new way to determine possible biological effects of mobile phone radiation. Nat Genet 27(Suppl):67

    Article  Google Scholar 

  2. Leszczynski D, Nylund R, Joenväärä S, Reivinen J (2004) Applicability of discovery science approach to determine biological effects of mobile phone radiation. Proteomics 4:426–431

    Article  PubMed  CAS  Google Scholar 

  3. Karinen A, Heinävaara S, Nylund R, Leszczynski D (2008) Mobile phone radiation might alter protein expression in human skin. BMC Genomics 9:77–81

    Article  PubMed  Google Scholar 

  4. Weisbrot D, Lin H, Ye L, Blank M, Goodman R (2003) Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 89:48–55

    Article  PubMed  CAS  Google Scholar 

  5. Lee KS, Choi JS, Hong SY, Son TH, Yu K (2008) Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics 29:371–379

    Article  PubMed  CAS  Google Scholar 

  6. Chavdoula ED, Panagopoulos DJ, Margaritis LH (2010) Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: detection of apoptotic cell-death features. Mutat Res 700:51–61

    Article  PubMed  CAS  Google Scholar 

  7. Finnie JW, Blumbergs PC, Cai Z, Manavis J (2009) Expression of the water channel protein, aquaporin-4, in mouse brains exposed to mobile phone radiofrequency fields. Pathology 41:473–475

    Article  PubMed  Google Scholar 

  8. Finnie JW, Cai Z, Manavis J, Helps S, Blumbergs PC (2010) Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields. Pathology 42:151–154

    Article  PubMed  CAS  Google Scholar 

  9. Finnie JW (2005) Expression of the immediate early gene, c-fos, in mouse brain after acute global system for mobile communication microwave exposure. Pathology 37:231–233

    Article  PubMed  CAS  Google Scholar 

  10. Finnie JW, Cai Z, Blumbergs PC, Manavis J, Kuchel TR (2006) Expression of the immediate early gene, c-fos, in fetal brain after whole gestation exposure of pregnant mice to global system for mobile communication microwaves. Pathology 38:333–335

    Article  PubMed  Google Scholar 

  11. Finnie JW, Cai Z, Blumbergs PC, Manavis J, Kuchel TR (2007) Stress response in mouse brain after long-term (2 year) exposure to mobile telephone radiofrequency fields using the immediate early gene, c-fos. Pathology 39:271–273

    Article  PubMed  CAS  Google Scholar 

  12. Finnie JW, Chidlow G, Blumbergs PC, Manavis J, Cai Z (2009) Heat shock protein induction in fetal mouse brain as a measure of stress after whole of gestation exposure to mobile telephony radiofrequency fields. Pathology 41:276–279

    Article  PubMed  CAS  Google Scholar 

  13. Lee JS, Huang TQ, Lee JJ, Pack JK, Jang JJ, Seo JS (2005) Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int J Radiat Biol 81:781–792

    Article  PubMed  CAS  Google Scholar 

  14. Kim TH, Huang TQ, Jang JJ, Kim MH, Kim HJ, Lee JS, Pack JK, Seo JS, Park WY (2008) Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain. Exp Mol Med 40:294–303

    Article  PubMed  CAS  Google Scholar 

  15. Maskey D, Kim M, Aryal B, Pradhan J, Choi IY, Park KS, Son T, Hong SY, Kim SB, Kim HG, Kim MJ (2010) Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 1313:232–241

    Article  PubMed  CAS  Google Scholar 

  16. Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT, Margaritis LH (2012) Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med. doi:10.3109/15368378.2011.631068

  17. Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann DK (1997) Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81:627–639

    Article  PubMed  CAS  Google Scholar 

  18. Belyaev IY, Baureus Koch C, Terenius O, Roxström-Lindquist K, Malmgren LOG, Sommer WH, Salford LG, Persson BRR (2006) Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27:295–306

    Article  PubMed  CAS  Google Scholar 

  19. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR (2009) Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn Biol Med 28:342–354

    Article  PubMed  CAS  Google Scholar 

  20. Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R (2010) GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol 86:367–375

    Article  PubMed  CAS  Google Scholar 

  21. Masuda H, Sanchez S, Dulou PE, Haro E, Anane R, Billaudel B, Leveque P, Veyret B (2006) Effect of GSM-900 and -1800 signals on the skin of hairless rats. I: 2-hour acute exposures. Int J Radiat Biol 82:669–674

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez S, Masuda H, Billaudel B, Haro E, Anane R, Leveque P, Ruffie G, Lagroye I, Veyret B (2006) Effect of GSM-900 and -1800 signals on the skin of hairless rats. II: 12-week chronic exposures. Int J Radiat Biol 82:675–680

    Article  PubMed  CAS  Google Scholar 

  23. Sanchez S, Masuda H, Ruffie G, Poulletier De Gannes F, Billaudel B, Haro E, Leveque P, Lagroye I, Veyret B (2008) Effect of GSM-900 and -1800 signals on the skin of hairless rats. III: Expression of heat shock proteins. Int J Radiat Biol 84:61–68

    Article  PubMed  CAS  Google Scholar 

  24. Pyrpasopoulou A, Kotoula V, Cheva A, Hytiroglou P, Nikolakaki E, Magras IN, Xenos TD, Tsiboukis TD, Karkavelas G (2004) Bone morphogenetic protein expression in newborn rat kidneys after prenatal exposure to radiofrequency radiation. Bioelectromagnetics 25:216–227

    Article  PubMed  CAS  Google Scholar 

  25. Esmekaya MA, Seyhan N, Ömeroglu S (2010) Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: a light, electron microscopy and immunohistochemical study. Int J Radiat Biol 86:1106–1116

    Article  PubMed  CAS  Google Scholar 

  26. Lee HJ, Pack JK, Kim TH, Kim N, Choi SY, Lee JS, Kim SH, Lee YS (2010) The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics 31:528–534

    Article  PubMed  CAS  Google Scholar 

  27. Leszczynski D, Joenväärä S, Reivinen J, Kuokka R (2002) Non-thermal activation of hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood–brain barrier-related effects. Differentiation 70:120–129

    Article  PubMed  CAS  Google Scholar 

  28. Nylund R, Leszczynski D (2004) Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4:1359–1365

    Article  PubMed  CAS  Google Scholar 

  29. Nylund R, Leszczynski D (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6:4769–4780

    Article  PubMed  CAS  Google Scholar 

  30. Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z (2006) Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics 6:4732–4738

    Article  PubMed  CAS  Google Scholar 

  31. Li HW, Yao K, Jin HY, Sun LX, Lu DQ, Yu YB (2007) Proteomic analysis of human lens epithelial cells exposed to microwaves. Jpn J Ophtalmol 51:412–416

    Article  CAS  Google Scholar 

  32. Nylund R, Tammio H, Kuster N, Leszczynski D (2009) Proteomic analysis of the response of human endothelial cell line EA.hy926 to 1800 GSM mobile phone radiation. J Proteomic Bioinform 2:455–462

    Article  CAS  Google Scholar 

  33. Nylund R, Kuster N, Leszczynski D (2010) Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells. Proteome Sci 8:52–58

    Article  PubMed  Google Scholar 

  34. Gerner C, Haudek V, Schnadl U, Bayer E, Gundacker N, Hutter HP, Mosgoeller W (2010) Increased protein synthesis by cells exposed to a 1800 MHz radio-frequency mobile phone electromagnetic field detected by proteome profiling. Int Arch Occup Environ Health 83:691–702

    Article  PubMed  CAS  Google Scholar 

  35. Kim KB, Byun HO, Han NK, Ko YG, Choi HD, Kim N, Pack JK, Lee JS (2010) Two-dimensional electrophoretic analysis of radio frequency radiation-exposed MCF7 breast cancer cells. J Radiat Res 51:205–213

    Article  PubMed  CAS  Google Scholar 

  36. Leszczynski D, Meltz ML (2006) Report: questions and answers concerning applicability of proteomics and transcriptomics in EMF research. Proteomics 6:4674–4677

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leszczynski, D. (2013). Effects of Radiofrequency-Modulated Electromagnetic Fields on Proteome. In: Leszczynski, D. (eds) Radiation Proteomics. Advances in Experimental Medicine and Biology, vol 990. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5896-4_6

Download citation

Publish with us

Policies and ethics