Skip to main content

Land Management Options for Mitigation and Adaptation to Climate Change

  • Reference work entry
  • First Online:
Global Environmental Change

Part of the book series: Handbook of Global Environmental Pollution ((EGEP,volume 1))

Abstract

In the long term, the strategy for sequestering carbon on land must be to increase the carbon density of all lands through management. But in the short term, the fastest way to reduce carbon emissions and increase carbon sinks on land is to stop deforestation and expand the area of forests. Such activities reverse historic trends, but “the forest transition” (Area 24:367–379, 1992) observed in many countries suggests the reversal may be under way. In the end, the choice is not between forests and agriculture (or energy or fiber) because a habitable Earth and a stable climate require both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelsen A (2010) Policies for reduced deforestation and their impact on agricultural production. Proc Natl Acad Sci 107:19639–19644

    Article  CAS  Google Scholar 

  • Bringezu S, O’Brien M, Schütz H (2011) Beyond biofuels: assessing global land use for domestic consumption of biomass: a conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 29:224–232

    Article  Google Scholar 

  • Chhatre A, Agrawal A (2009) Trade-offs and synergies between carbon storage and livelihood benefits from forest commons. Proc Natl Acad Sci 106:17667–17670. doi:10.1073/pnas.0905308106

    Article  CAS  Google Scholar 

  • DeFries R, Rosenzweig C (2010) Toward a whole-landscape approach for sustainable land use in the tropics. Proc Natl Acad Sci 107:19627–19632

    Article  CAS  Google Scholar 

  • DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181

    Article  CAS  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci 107:16732–16737. doi:10.1073/pnas.0910275107

    Article  CAS  Google Scholar 

  • Houghton RA, (2012) Historic changes in terrestrial carbon storage. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, and von Braun J (eds). Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle. Springer, Dordrecht. 59-82. doi 10.1007/978-94-007-4159-1_4.

    Google Scholar 

  • Mather AS (1992) The forest transition. Area 24:367–379

    Google Scholar 

  • Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci 107:20917–20922. doi:10.1073/pnas.1014773107

    Article  CAS  Google Scholar 

  • Nelson A, Chomitz KM (2011) Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS One 6(8):e22722

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Rudel TK, Schneider L, Uriarte M, Turner BL II, DeFries R et al (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. Proc Natl Acad Sci 106:20675–20680

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gasses through emissions from land use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • Thomson AM, Calvin KV, Chiini LP, Hurtt G, Edmonds JA, Bond-Lamberty B, Frolking S, Wise MA, Janetos AC (2010) Climate mitigation and the future of tropical landscapes. Proc Natl Acad Sci 107:19633–19638

    Article  CAS  Google Scholar 

  • West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural lands. Proc Natl Acad Sci 107:19645–19648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Houghton, R.A. (2014). Land Management Options for Mitigation and Adaptation to Climate Change. In: Freedman, B. (eds) Global Environmental Change. Handbook of Global Environmental Pollution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5784-4_9

Download citation

Publish with us

Policies and ethics