Skip to main content

Abstract

In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.

The CIRCE models have been integrated from 1951 to 2050, with initial conditions obtained from a long spin-up run of the coupled systems. The simulations have been performed using observed radiative forcing (solar constant, greenhouse gases concentration and aerosol distribution) during the first half of the simulation period and the IPCC SRES A1B scenario during the second half (2001–2050).

The projections indicate that remarkable changes in the Mediterranean region climate might occur already in the next few decades. A substantial warming (about 1.5°C in winter and almost 2°C in summer) and a significant decrease of precipitation (about 5%) might affect the region in the 2021–2050 period compared to the reference period (1961–1990), in an A1B emission scenario. However, locally the changes might be even larger. In the same period, the projected surface net heat loss decreases, leading to a weaker cooling of the Mediterranean Sea by the atmosphere, whereas the water budget appears to increase, leading the basin to loose more water through its surface than in the past. The climate change projections obtained from the CIRCE models are overall consistent with the findings obtained in previous scenario simulations, such as PRUDENCE, ENSEMBLES and CMIP3. This agreement suggests that the results obtained from the climate projections are robust to substantial changes in the configuration of the models used to make the simulations.

Finally, the CIRCE models produce a 2021–2050 mean steric sea-level rise that ranges between +6.6 cm and +11.6 cm, with respect to the period of reference. Within the CIRCE project the results obtained from these models have been used to investigate the climate of the Mediterranean region and its possible response to radiative forcing. Furthermore, the data have been made available for climate change impact studies that are included in the Regional Assessment of Climate Change in the Mediterranean that has been prepared in the context of the CIRCE project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alioua M, Harzallah A (2008) Nesting of a numerical model of water circulation along the Tunisia coasts in a numerical model of the Mediterranean Sea. Bull Inst Natn Scien Tech Mer de Salammbô 35 (in French, available at ali.harzallah@instm.rnrt.tn)

    Google Scholar 

  • Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29. doi:10.1029/2001GL013554

  • Annan JD, Hargreaves JC (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett 37:L02703

    Article  Google Scholar 

  • Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti P, Sannino G, Struglia MV, Giorgi F, Bi X, Pal J, Rauscher S (2009) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present-climate simulation. Clim Dyn. doi:10.1007/s00382-009-0691-8

  • Bengtsson L, Hodges KI, Roeckner E (2007) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnæs K, Holt T, Jylhä K, Koffi B, Palutikoff J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability over the last 40 years: focus on the EMT. JGR-Ocean. doi:10.1029/2009JC005850

  • Calafat FM, Gomis D, Marcos M (2009) Comparison of Mediterranean sea level fields for the period 1961–2000 as given by a data reconstruction and a 3D model. Glob Planet Change 68:175–184

    Article  Google Scholar 

  • Carril A, Gualdi S, Cherchi A, Navarra A (2008) Heatwaves in Europe: areas of homogeneous variability and links with the regional to large-scale atmospheric and SST anomalies. Clim Dyn 30:77–98

    Article  Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. Appl Stat 53:405–425

    Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:31–52

    Article  Google Scholar 

  • Christensen JH, Rummukainen M, Lenderink G (2009) Formulation of very-high-resolution regional climate model ensembles for Europe. In: van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, 160pp

    Google Scholar 

  • Connolley WM, Bracegirdle TJ (2007) An Antarctic assessment of IPCC AR4 coupled models. Geophys Res Lett 34. doi:10.1029/2007gl031648

  • Della Marta PM, Pinto JG (2009) Statistical uncertainty of changes in winter storms over north Atlantic and Europe in an ensemble of transient climate simulations. Geophys Res Lett 36:L14703. doi:10.1029/2009GL038557

    Article  Google Scholar 

  • Déqué M (2009) Temperature and precipitation probability density functions in ENSEMBLES regional scenarios. ENSEMBLES technical report 5. Available at Météo-France/CNRM, 42 av. Coriolis, 31057 Toulouse Cedex 01, France, 63 pp

    Google Scholar 

  • Déqué M, Somot S (2010) Weighted frequency distributions expressing modelling uncertainties in the ENSEMBLES regional climate experiments. Clim Res. doi:10.3354/cr00866

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70

    Article  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34. doi:10.1029/2007GL030000

  • Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meteorol Soc 135:1538–1559

    Article  Google Scholar 

  • Dubois C, Somot S, Calmanti S, Carillo A, Deque M, Dell’Aquilla A, Elizalde A, Gualdi S, Jacob D, Lheveder B, Li L, Oddo P, Sannino G, Scoccimarro E, Sevault F (2012) Future projections of the surface heat and water budgets of the Mediterranean sea in an ensemble of coupled atmosphere-ocean regional climate models. Clim Dyn 39:1859–1884. doi:10.1007/s00382-011-1261-4

    Google Scholar 

  • Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and largescale circulation influences. Nat Hazard Earth Syst Sci 11:1–16. doi:10.5194/nhess-11-1-2011

    Article  Google Scholar 

  • Fischer E, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci. doi:10.1007/s00382-010-0780-8

  • Furrer R, Knutti R, Sain SR, Nychka DW, Meehl GA (2007) Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys Res Lett 34:L06711

    Article  Google Scholar 

  • Giannakopoulos C, LeSeager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Glob Planet Change 68:209–224

    Article  Google Scholar 

  • Gimeno L, Trigo RM, Ribera P, García JA (2007) Editorial: special issue on cut-off low systems (COL). Meteorol Atmos Phys 96. doi:10.1007/s00703-006-0216-5

  • Giorgi F (2006) Climate change Hot-spots. Geophys Res Lett 33:L08707

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood ERA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Change 57:27–42

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2008a) Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int J Climatol 28:1025–1045

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2008b) Downscaling future climate change: temperature scenarios for the Mediterranean area. Spec Issue Glob Planet Change 63:127–131

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2010a) Predictability of Mediterranean climate variables from oceanic variability. Part I: Sea surface temperature regimes. Clim Dyn. doi: DOI: 10.1007/s00382-010-0819-x

    Google Scholar 

  • Hertig E, Jacobeit J (2010b) Predictability of Mediterranean climate variables from oceanic variability. Part II: Statistical models of monthly precipitation and temperature in the Mediterranean area. Clim Dyn 36(5–6):825–843. doi:10.1007/s00382-010-0821-3

    Google Scholar 

  • Hertig E, Seubert S, Jacobeit J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazard Earth Syst Sci 10(2039–2050):2010

    Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, p 881. http://www.cnrm.meteo.fr/gmgec/spip.php?rubrique31 or samuel.somot@meteo.fr

  • IPCC (2005) Guidance notes for lead authors of the IPCC fourth assessment report on addressing uncertainties. http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996pp

    Google Scholar 

  • IPCC (2010) Meeting report of the Intergovernmental Panel on Climate Change expert meeting on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) IPCC working group I technical support unit, University of Bern, Bern, Switzerland, pp 117

    Google Scholar 

  • Jackson CS, Sen MK, Huerta G, Deng Y, Bowman KP (2008) Error reduction and convergence in climate prediction. J Clim 21(24):6698–6709

    Article  Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikalojewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • Kendon EJ, Rowell DP, Jones RG (2009) Mechanisms and reliability of future projected changes in daily precipitation. Clim Dyn 35. doi:10.1007/s00382-009-0639-z

  • Knutti R (2008) Should we believe model predictions of future climate change? Philos Trans R Soc A 366:4647–4664

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758

    Article  Google Scholar 

  • Leckebusch GC, Renggli D, Ulbrich U (2008) Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorol Z 17:575–587

    Article  Google Scholar 

  • Levitus S (1998) NODC World Ocean Atlas 1998 data, report: NOAACIRES. Clim Diag Cent Boulder, Colorado

    Google Scholar 

  • Li L (2006) Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Clim Dyn 27:543–552

    Article  Google Scholar 

  • Lionello P, Elvini E, Nizzero A (2003) A procedure for estimating wind waves and storm-surges climate scenarios in a regional basin: the Adriatic Sea case. Clim Res 23:217–231

    Article  Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63(2–3):152–162

    Article  Google Scholar 

  • Lionello P, Gelati MB, Elvini E (2010) Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Phys Chem Earth. doi:10.1016/j.pce.2010.04.001

  • Marcos M, Tsimplis M (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113:C12028. doi:10.1029/2008JC004820

    Article  Google Scholar 

  • Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. J Geophys Res 114:C01007. doi:10.1029/2008JC004912

    Article  Google Scholar 

  • Mariotti A, Arkin P (2007) The North Atlantic oscillation and oceanic precipitation variability. Clim Dyn 28:35–51

    Article  Google Scholar 

  • Mariotti A et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):044001

    Article  Google Scholar 

  • May W (2008) Climatic changes associated with a global 2°C-stabilization scenario simulated by the ECHAM5/MPI-OM coupled climate model. Clim Dyn 31:283–313

    Article  Google Scholar 

  • MEDAR Group (2002) MEDATLAS/2002 database. Mediterranean and Black Sea database of temperature salinity and bio-chemical parameters. Climatological Atlas. IFREMER Edition (4 Cdroms)

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KA (2007a) The WCRP CMIP3 multimodel dataset – a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007b) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans R Soc A 365(1857):1993–2028

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust Meteorol Mag 39:155–166

    Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, 599 pp

    Google Scholar 

  • Nieto R, Gimeno L, de la Torre L, Ribera P, Gallego D, García-Herrera R, García JA, Nuñez M, Redaño A, Lorente J (2005) Climatological features of cut-off low systems in the Northern Hemisphere. J Clim 18:2805–2823

    Article  Google Scholar 

  • Nieto R, Sprenger M, Wernil H, Trigo R, Gimeno L (2008) Identification and climatology of cutoffs lows near the tropopause. Ann N Y Acad Sci 1146:256–290

    Article  Google Scholar 

  • Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics and links to large-scale patterns. Nat Hazard Earth Syst Sci 10:1379–1391

    Article  Google Scholar 

  • Oddo P, Adani M, Pinardi N, Fratianni C, Tonani M, Pettenuzzo D (2009) A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci 5:461–473

    Article  Google Scholar 

  • Palmén E, Newton CW (1969) Atmospheric circulation systems: their structure and physical interpretation. Academic, New York, p 603

    Google Scholar 

  • Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy JF, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Pettenuzzo D, Large W, Pinardi N (2010) On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J Geophy Res 115:C06022. doi:10.1029/2009JC005631

    Article  Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2006) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Zeitschrift 14:823–838

    Article  Google Scholar 

  • Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 – Part 1. MPI Report 349:127 pp

    Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblüh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Russell GL (2007) Step-mountain technique applied to an atmospheric C-grid model, or how to improve precipitation near mountains. Mon Weather Rev 135:4060–4076

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of Regional Climate Models. Geophys Res Lett 36:L21401. doi:10.1029/2009GL040120

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of the Mediterranean Sea Water and Heat budgets as simulated by an ensemble of high resolution Regional Climate Models. Clim Dyn. doi:10.1007/s00382-011-1012-6

  • Sannino G, Bargagli A, Artale V (2004) Numerical modeling of the semidiurnal tidal exchange through the strait of Gibraltar. J Geophys Res 109:C05011. doi:10.1029/2003JC002057

    Article  Google Scholar 

  • Sannino G, Carillo A, Artale V (2007) Three-layer view of transports and hydraulics in the strait of gibraltar: a three-dimensional model study. J Geophys Res 112:C03010. doi:10.1029/2006JC003717

    Article  Google Scholar 

  • Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009a) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the strait of Gibraltar. Ocean Model 30:56–72

    Article  Google Scholar 

  • Sannino G, Pratt L, Carillo A (2009b) Hydraulic criticality of the exchange flow through the strait of Gibraltar. J Phys Oceanogr 39:2779–2799

    Article  Google Scholar 

  • Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW, Wigley TML, Mears C, Wentz FJ, Bruggemann W, Gillett NP, Klein SA, Solomon S, Stott PA, Wehner MF (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci USA 106:14778–14783

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710

    Article  Google Scholar 

  • Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide. Note de centre n°107. Groupe de Météorologie de Grande Echelle et Climat. CNRM. mai 2009

    Google Scholar 

  • Smith LA (2002) What might we learn from climate forecasts? Proc Natl Acad Sci USA 99:2487–2492

    Article  Google Scholar 

  • Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104(485):97–116

    Article  Google Scholar 

  • Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27:851–879. doi::10.1007/s00382-006-0167-z

    Article  Google Scholar 

  • Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2–3):112–126. doi:10.1016/j.gloplacha.2007.10.003

    Article  Google Scholar 

  • Somot S, Sevaut F, Déqué M (2009) Design and first simulation with a tri-coupled AORCM dedicated to the Mediterranean study. Research activities in atmospheric and oceanic modelling. CAS/JSC working group on numerical experimentation. Report no 39. Available at http://collaboration.cmc.ec.gc.ca/science/wgne/index.html

  • Soto-Navarro J, Criado-Aldeanueva F, García-Lafuente J, Sánchez-Román A (2010) Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J Geophys Res 115:C10023. doi:10.1029/2010JC006302

    Article  Google Scholar 

  • Stanev EV, Le Traon P-Y, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcings: analysis of altimeter and surface data for the Black Sea. J Geophys Res 105(C7):17203–17216

    Article  Google Scholar 

  • Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspects of the observed variability. J Clim 17:4740–4751

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multimodel ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2053–2075

    Article  Google Scholar 

  • Tebaldi C, Smith RW, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Clim 18:1524–1540

    Article  Google Scholar 

  • Thorpe R, Bigg G (2000) Modelling the sensitivity of the Mediterranean outflow to anthropogenically forced climate change. Clim Dyn 16:355–368

    Article  Google Scholar 

  • Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J (2011) A novel approach for the detection of inhomogeneities affecting climate time series. J Appl Meteorol Clim 51(2):317–326, revised

    Article  Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM report no 3 Toulouse, France, 60 pp

    Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, 160pp

    Google Scholar 

  • Waugh DW, Eyring V (2008) Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos Chem Phys 8:5699–5713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Gualdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gualdi, S. et al. (2013). Future Climate Projections. In: Navarra, A., Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean. Advances in Global Change Research, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5781-3_3

Download citation

Publish with us

Policies and ethics