Skip to main content

Approaches to Modelling Ecogeomorphic Systems

  • Chapter
  • First Online:
Patterns of Land Degradation in Drylands

Abstract

Drivers of land degradation often co-occur and their effects are often non-additive because of internal system feedbacks. Therefore, to understand how drivers of land degradation alter ecogeomorphic patterns and processes, novel tools are required. In this chapter we explore different modelling approaches that have been developed to simulate pattern formation, and ecological and geomorphic processes. These modelling approaches reflect some of the best available tools at present, but notably, they tend to simulate only one or at best two components of the ecogeomorphic system. The chapter culminates with a discussion of these different modelling approaches and how they provide a foundation upon which to develop much needed ecogeomorphic modelling tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahams AD, Parsons AJ (1991) Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona. J Hydrol 122:49–59

    Google Scholar 

  • Ascough JC, Maier HR, Ravalico JK, Strudley MW (2008) Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol Model 219:383–399

    Google Scholar 

  • Atlas of Namibia Project (2002) Directorate of Environmental Affairs, Ministry of Environment and Tourism. http://uni-koeln.de/sfb389/e/e1/download/atlas_namibia/pics/climate/rainfall-annual.jpg. Accessed Oct 2011

  • Baas ACW (2002) Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology 48:309–328. doi:10.1016/S0169-555X(02)00187-3

    Google Scholar 

  • Baas ACW (2007) Complex systems in aeolian geomorphology. Geomorphology 91:311–331. doi:10.1016/j.geomorph.2007.04.012

    Google Scholar 

  • Baas ACW, Nield JM (2007) Modelling vegetated dune landscapes. Geophys Res Lett 34:L06405. doi:10.1029/2006GL029152

    Google Scholar 

  • Baas ACW, Nield JM (2010) Quantifying the evolution of vegetated aeolian landscapes: ecogeomorphic state variables and phase-space construction. Earth Surf Process Landf 35:717–731. doi:10.1002/esp.1990

    Google Scholar 

  • Barbier N, Couteron P, Lejoly J, Deblauwe V, Lejeune O (2006) Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. J Ecol 94:537–547

    Google Scholar 

  • Barbour MG, Cunningham G, Oechel WC, Bamberg SA (1977) Growth and development, form and function. In: Mabry TJ, Hunziker JH, DiFeo DR (eds) Creosote bush: biology and chemistry of Larrea in New World deserts. Hutchinson and Ross, Stroudsberg, 304 pp

    Google Scholar 

  • Bartley R, Roth CH, Ludwig J, McJannet D, Liedloff A, Corfield J, Hawdon A, Abbott B (2006) Runoff and erosion from Australia’s tropical semi-arid rangelands: influence of ground cover for differing space and time scales. Hydrol Process 20:3317–3333

    Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47:RG1005

    Google Scholar 

  • Bracken LJ, Croke J (2007) The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Process 21:1749–1763

    Google Scholar 

  • Brandmeyer JE, Karimi HA (2000) Coupling methodologies for environmental models. Environ Model Softw 15:479–488

    Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Change 51:259–305

    Google Scholar 

  • Calvo-Cases A, Boix-Fayos C, Imeson AC (2003) Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology 50:269–291

    Google Scholar 

  • Cammeraat LH (2004) Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in Southeast Spain. Agric Ecosyst Environ 104:317–332

    Google Scholar 

  • Coffin DP, Urban DL (1993) Implications of natural-history traits to system-level dynamics – comparisons of a grassland and a forest. Ecol Model 67:147–178

    Google Scholar 

  • Cole DN (1995) Experimental trampling of vegetation. 1. Relationship between trampling intensity and vegetation response. J Appl Ecol 32:203–214

    Google Scholar 

  • Couteron P, Lejeune O (2001) Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J Ecol 89:616

    Google Scholar 

  • Cross MC, Hohenberg PC (1993) Pattern-formation outside of equilibrium. Rev Mod Phys 65:851

    CAS  Google Scholar 

  • Devitt DA, Smith SD (2002) Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ 50:99–108

    Google Scholar 

  • Dingman SL (1994) Physical hydrology, 1st edn. Prentice Hall, New Jersey, 575 pp

    Google Scholar 

  • Dodd MB, Laueroth WK (1997) The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecol 133:13–28

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modelling and impacts. Science 289:2068–2074

    CAS  Google Scholar 

  • Eppinga M, Rietkerk M, Borren W, Lapshina E, Bleuten W, Wassen M (2008) Regular surface patterning of peatlands: confronting theory with filed data. Ecosystems 11:520–538

    CAS  Google Scholar 

  • Esteban J, Fairen V (2006) Self-organized formation of banded vegetation patterns in semi-arid regions: a model. Ecol Complex 3:109–118

    Google Scholar 

  • Fischlin A et al (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gillies JA, Lancaster N, Nickling WG, Crawley DM (2000) Field determination of drag forces and shear stress partitioning effects for a desert shrub Sarcobatus vermiculatus, greasewood. J Geophys Res 105:871–880

    Google Scholar 

  • Gleason K, Krantz WB, Caine N, George JH, Gunn RD (1986) Geometrical aspects of sorted patterned ground in recurrently frozen soil. Science 232:216–220

    CAS  Google Scholar 

  • Goslee SC, Peters DCP, Beck KG (2001) Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecol Model 139:31–45

    CAS  Google Scholar 

  • Goslee SC, Peters DCP, Beck KG (2006) Spatial prediction of invasion success across heterogeneous landscapes using an individual-based model. Biol Invasion 8:193–200

    Google Scholar 

  • Green RE, Ampt GA (1911) Studies on soil physics: 1. Flow of air and water through soils. J Agric Sci 4:1–24

    Google Scholar 

  • Grover HD, Musick HB (1990) Shrubland encroachment in Southern New Mexico, USA – an analysis of desertification processes in the American Southwest. Clim Change 17:305–330

    Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Google Scholar 

  • Hargreaves GH (1974) Estimation of potential and crop evapotranspiration. Trans ASAE 17:701–704

    Google Scholar 

  • Hartley AE, Schlesinger WH (2000) Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemisrty 50:279–300

    CAS  Google Scholar 

  • Havis RN, Smith RE, Adrian DD (1992) Partitioning solute transport between infiltration and overland flow under rainfall. Water Resour Res 28:2569–2580

    CAS  Google Scholar 

  • Hesp PA (1981) The formation of shadow dunes. J Sed Petrol 51:101–112

    Google Scholar 

  • Hesp P, McLachlan A (2000) Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes. J Arid Environ 44:155–172

    Google Scholar 

  • HilleRisLambers R, Rietkerk M, Van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Google Scholar 

  • Hochstrasser T (2001) Pattern and process at a desert grassland-shrubland ecotone. Colorado State University, Fort Collins

    Google Scholar 

  • Hochstrasser T, Peters DPC (2005) Ecotone manual. Technical report ERDC/CERL CR-05-2. US Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign

    Google Scholar 

  • Hochstrasser T, Peters DPC, Fehmi JS (2005) Simulation of vegetation recovery from military disturbances on Fort Bliss. Technical Report ERDC/CERL TR-05-39. US Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign

    Google Scholar 

  • Hochstrasser T, Peters DPC, Fehmi JS, VonFinger K (2002) A bibliography of important plant species in the Chihuahuan desert of North America (1904–2002). Technical report ERDC/CERL SR-02-8. US Army Engineer Research and Development Center. Construction Engineering Research Laboratory, Champaign, IL, USA

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Google Scholar 

  • Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, Van Rooyen N (1996) Spacing and coexistence in semiarid savannas. J Ecol 84:583–595

    Google Scholar 

  • Jeltsch F, Blaum N, Claasen N, Eschenbach A, Grohmann C, Gröngröft A, Joubert DF, Horn A, Lohmann D, Linsenmair KE, Lück-Vogel M, Medisnski TV, Meyfahrt S, Mills A, Petersen A, Popp A, Poschlod P, Reisch C, Rossmanith E, Rubilar H, Schütze S, Seymour C, Simmons R, Smit GN, Strohbach M, Tews J, Tietjen B, Wesuls D, Wichmann M, Wieczorek M, Zimmermann I (2010a) Impacts of landuse and climate change on the dynamics and biodiversity in the Thornbush Savanna Biome. In: Hoffman MT, Schmiedel U, Jürgens N (eds) Biodiversity in southern Africa, vol 3, Implications for landuse and management. Klaus Hess Publishers, Göttingen/Windhoek, pp 33–74

    Google Scholar 

  • Jeltsch F, Blaum N, Lohmann D, Meyfahrt S, Rossmanith E, Schütze S, Tews J, Tietjen B, Wichmann M, Wieczorek M (2010a) Modelling vegetation change in arid and semi-arid savannas. In: Schmiedel U, Jürgens N (eds) Biodiversity in southern Africa, vol 2, Patterns and processes at regional scale. Klaus Hess Publishers, Göttingen/Windhoek, pp 274–282

    Google Scholar 

  • Jeltsch F, Tietjen B, Blaum N, Rossmanith E (2010b) Population and ecosystem modeling of land use and climate change impacts on savanna dynamics. In: Hill MJ, Hanan NP (eds) Ecosystem function in savannas: measurement and modeling at landscape to global scales. CRC Press, Boca Raton, Florida, p 623

    Google Scholar 

  • Joubert DF, Rothauge A, Smit GN (2008) A conceptual model of vegetation dynamics in the semiarid highland savanna of Namibia, with particular reference to bush thickening by Acacia mellifera. J Arid Environ 72:2201–2210

    Google Scholar 

  • Kokkonen T, Jolma A, Koivusalo H (2002) Interfacing environmental simulation models and databases using XML. Environ Model Softw 18:463–471

    Google Scholar 

  • Kuiper SM, Meadows ME (2002) Sustainability of livestock farming in the communal lands of southern Namibia. Land Degrad Dev 13:1–15

    Google Scholar 

  • Lefever R, Lejeune O (1997) On the origin of the tiger bush. Bull Math Biol 59:263–294

    Google Scholar 

  • Lefever R, Barbier N, Couteron P, Lejeune O (2009) Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification. J Theor Biol 261:194

    Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832

    Google Scholar 

  • Li ZQ, Bogaert J, Nijs I (2005) Gap pattern and colonization opportunities in plant communities: effects of species richness, mortality, and spatial aggregation. Ecography 28:777–790

    Google Scholar 

  • Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–281

    Google Scholar 

  • Martinez-Mena M, Albaladejo JA, Castillo VM (1998) Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain. Hydrol Process 5:741–754

    Google Scholar 

  • McCally CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840

    Google Scholar 

  • Ministry of Agriculture, Water and Forestry (2009) Agricultural statistics bulletin (2000–2007). Directorate of Planning, Windhoek

    Google Scholar 

  • Minnick TJ, Coffin DP (1999) Geographic patterns of simulated establishment of two Bouteloua species: implications for distributions of dominants and ecotones. J Veg Sci 10:343–356

    Google Scholar 

  • Mueller EN, Wainwright J, Parsons AJ (2007) The stability of vegetation boundaries and the propagation of desertification in the American Southwest: a modelling approach. Ecol Model 208:91–101

    Google Scholar 

  • Nield JM, Baas ACW (2008a) Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach. Earth Surf Process Landf 33:724–740. doi:10.1002/esp.1571

    Google Scholar 

  • Nield JM, Baas ACW (2008b) The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response. Glob Planet Change 64:76–92. doi:10.1016/j.gloplacha.2008.10.002

    Google Scholar 

  • Norby RJ, Luo YQ (2004) Evaluating ecosystem response to rising CO(2) and global warming in a multi-factor world. New Phytol 162:281–293

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Google Scholar 

  • Okin GS, Gillette DA, Herrick JE (2006) Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–275

    Google Scholar 

  • Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DC, Fredrickson EL (2009) Do changes in connectivity explain desertification. Bioscience 59:237–244

    Google Scholar 

  • Parker P, Letcher R, Jakeman A, Beck MB, Harris G, Argent RM, Hare M, Pahl-Wostl C, Voinov A, Janssen M, Sullivan P, Scoccimarro M, Friend A, Sonnenshein M, Barker D, Matejicek L, Odulaja D, Deadman P, Lim K, Larocque TP, Fletcher C, Put A, Maxwell T, Charles A, Breeze H, Nakatani N, Mudgal S, Naito W, Osidele O, Eriksson I, Kautsky U, Kautsky E, Naeslund B, Kumblad L, Park R, Maltagliati S, Girardin P, Rizzoli A, Mauriello D, Hoch R, Pelletier D, Reilly J, Olafsdottir R, Bin S (2002) Progress in integrated assessment and modelling. Environ Model Softw 17:209–217

    Google Scholar 

  • Parsons AJ, Abrahams AD, Luk S (1991) Size characteristics of sediment in interill overland flow on a semi-arid hillslope, Southern Arizona. Earth Surf Process Landf 16:143–152

    Google Scholar 

  • Parsons AJ, Wainwright J, Abrahams AD, Simanton JR (1997) Distributed dynamic modelling of interrill overland flow. Hydrol Process 11:1833–1859

    Google Scholar 

  • Parton WJ (1978) Abiotic section of ELM. In: Innis GS (ed) Grassland simulation model. Springer, New York, pp 31–53

    Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Change 19:35–48

    Google Scholar 

  • Perry GLW, Enright NJ (2006) Spatial modelling of vegetation change in dynamic landscapes: a review of methods and applications. Prog Phys Geogr 30:47–72

    Google Scholar 

  • Peters DPC (2000) Climatic variation and simulated patterns in seedling establishment of two dominant grasses at a semi-arid-arid grassland ecotone. J Veg Sci 11:493–504

    Google Scholar 

  • Peters DPC (2002) Plant species dominance at a grassland-shrubland ecotone: an individual- based gap dynamics model of herbaceous and woody species. Ecol Model 152:5–32

    Google Scholar 

  • Peters DPC, Havstad KM (2006) Nonlinear dynamics in arid and semi-arid systems: interactions among drivers and processes across scales. J Arid Environ 65:196–206

    Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Google Scholar 

  • Rawls W, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320

    Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F (2011) Noise-induced phenomena in the environmental sciences. Cambridge University Press, New York

    Google Scholar 

  • Rietkerk M, Van de Koppel J (1997) Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79:69–76

    Google Scholar 

  • Rietkerk M, Dekker SC, De Ruiter PC, Van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    CAS  Google Scholar 

  • Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38:268–280

    Google Scholar 

  • Sagues F, Sancho JM, García-Ojalvo J (2007) Spatio-temporal order out of noise. Rev Mod Phys 79:829

    Google Scholar 

  • Sala OE, Lauenroth WK, Parton WJ (1992) Long-term soil water dynamics in the shortgrass steppe. Ecology 73:1175–1181

    Google Scholar 

  • Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209

    CAS  Google Scholar 

  • Scarsoglio S, Laio F, D’Odorico P, Ridolfi L (2011) Spatial pattern formation induced by Gaussian white noise. Math Biosci 229(2):174–184

    Google Scholar 

  • Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    CAS  Google Scholar 

  • Schwartz M (2006) Numerical modelling of groundwater vulnerability: the example Namibia. Environ Geol 50:237–249

    CAS  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of asymmetry in competition among plants. Oecologia 113:447–455

    Google Scholar 

  • Scoging H, Parsons AJ, Abrahams AD (1992) Application of a dynamic overlandflow hydraulic model to a semi-arid hillslope, Walnut Gulch, Arizona. In: Parsons AJ, Abrahams AD (eds) Overland flow: hydraulics and erosion mechanics. UCL Press, London

    Google Scholar 

  • Silvertown J, Smith B (1988) Gaps in the canopy – the missing dimension in vegetation dynamics. Vegetation 77:57–60

    Google Scholar 

  • Smith RE, Parlange JY (1978) A parameter-efficient hydrologic infiltration model. Water Resour Res 14:533–538

    Google Scholar 

  • Stavi I, Lavee H, Ungar ED, Sarah P (2009) Eco-geomorphic feedbacks in semi-arid rangelands: a review. Pedosphere 19:217–229

    Google Scholar 

  • Tengberg A (1995) Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina-Faso. J Arid Environ 30:265–282

    Google Scholar 

  • Thomas DSG (1999) Coastal and continental dune management into the twenty-first century. In: Goudie AS, Livingstone I, Stokes S (eds) Aeolian environments, sediments, and landforms. Wiley, Chichester, pp 105–127

    Google Scholar 

  • Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221

    CAS  Google Scholar 

  • Tietjen B, Zehe E, Jeltsch F (2009) Simulating plant water availability in dry lands under climate change: a generic model of two soil layers. Water Resour Res 45:W01418

    Google Scholar 

  • Tietjen B, Jeltsch F, Zehe E, Classen N, Groengroeft A, Schiffers K, Oldeland J (2010) Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology 3:226–237

    Google Scholar 

  • Todd RW, Klocke NL, Hergert GW, Parkhurst AM (1991) Evaporation from soil influenced by crop shading, crop residue, and wetting regime. Trans ASABE (Am Soc Agric Biol Eng) 34:0461–0466

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237:37

    Google Scholar 

  • Turnbull L, Wainwright J, Brazier RE (2008) A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology 1:23–34

    Google Scholar 

  • Turnbull L, Wainwright J, Brazier RE (2010) Modelling hydrology, erosion and nutrient transfers over a semi-arid transition from grassland to shrubland in the south-western USA. J Hydrol 388:258–272. doi:10.1016/j.jhydrol.2010.05.005

    CAS  Google Scholar 

  • Turnbull L, Wainwright J, Brazier RE (2011) Nutrient dynamics during runoff events over a transition from grassland to shrubland in south-western USA. Hydrol Process 25:1–17. doi:10.1002/hyp.7806

    CAS  Google Scholar 

  • Turnbull L, Wilcox BP, Belnap J, Ravi S, D’Odorico P, Childers DL, Gwenzi W, Okin GS, Wainwright J, Caylor KK, Sankey T (2012) Understanding the role of ecohydrological feedbacks in ecosystem-state change in drylands. Ecohydrology. doi:10.1002/eco.265

    Google Scholar 

  • Valentin C, D’Herbes JH, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1–24

    Google Scholar 

  • van Palutikof PJ, derGillies JA, Lancaster N, Nickling WG, Crawley DM (2000) Field determination of drag forces and shear stress partitioning effects for a desert shrub (Sarcobatus vermiculatus, greasewood). J Geophys Res 105:24871–24880

    Google Scholar 

  • Viney NR, Sivapalan M, Deeley D (2000) A conceptual model of nutrient mobilisation and transport applicable at large catchment scales. J Hydrol 240:23–44

    CAS  Google Scholar 

  • Von Hardenberg J, Kletter AY, Yizhaq H, Nathan J, Meron E (2010) Periodic versus scale-free patterns in dryland vegetation. Proc R Soc B 277:1771–1776

    Google Scholar 

  • Wainwright J (2005) Climate and climatological variations in the Jornada range and neighbouring areas of the US South West. Adv Environ Monit Model 1:39–110

    Google Scholar 

  • Wainwright J, Bracken LJ (2011) Overland flow and runoff generation. In: Thomas DSG (ed) Arid zone geomorphology, 3rd edn. Wiley, Chichester, pp 235–268

    Google Scholar 

  • Wainwright J, Parsons AJ (2002) The effect of temporal variations in rainfall on scale dependency in runoff coefficients. Water Resour Res 38: Art. No 1271, pp 7.1–7.10

    Google Scholar 

  • Wainwright J, Parsons AJ, Abrahams AD (2000) Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrol Process 14:2921–2943

    Google Scholar 

  • Wainwright J, Parsons AJ, Müller EN, Brazier RE, Powell DM, Fenti B (2008a) A transport-distance approach to scaling erosion rates: 1. background and model development. Earth Surf Process Landf 33:813–826. doi:10.1002/esp.1624

    Google Scholar 

  • Wainwright J, Parsons AJ, Müller EN, Brazier RE, Powell DM, Fenti B (2008b) A transport-distance approach to scaling erosion rates: 2 sensitivity and evaluation of Mahleran. Earth Surf Process Landf 33:962–984. doi:10.1002/esp.1623

    Google Scholar 

  • Wainwright J, Parsons AJ, Müller EN, Brazier RE, Powell DM, Fenti B (2008c) A transport-distance approach to scaling erosion rates: 3. Evaluating scaling characteristics of Mahleran. Earth Surf Process Landf 33:1113–1128. doi:10.1002/esp.1622

    Google Scholar 

  • Walker BH, Ludwig D, Holling CS, Peterman RM (1981) Stability of semi-arid savanna grazing systems. J Ecol 69:473–498

    Google Scholar 

  • Wallach R, van Genuchten M (1990) A physically based model for predicting solute transfer from soil solution to rainfall-induced runoff water. Water Resour Res 26:2119–2126

    Google Scholar 

  • Walton RS, Volker RE, Bristow KL, Smettem KRJ (2000a) Experimental examination of solute transport by surface runoff from low-angle slopes. J Hydrol 233:19–36

    CAS  Google Scholar 

  • Walton RS, Volker RE, Bristow KL, Smettem KRJ (2000) Solute transport by surface runoff from low-angle slopes: theory and application. Hydrol Process 14:1139–1158

    Google Scholar 

  • Wang X, Wang T, Dong Z, Liu X, Qian G (2006) Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. J Arid Environ 65:129–141

    Google Scholar 

  • Werner BT (1995) Eolian dunes: computer simulation and attractor interpretation. Geology 23:1107–1110

    Google Scholar 

  • Wolfe SA, Nickling WG (1993) The protective role of sparse vegetation in wind erosion. Prog Phys Geogr 17:50–68

    Google Scholar 

  • Wolfe SA, Muhs DR, David PP, McGeehin JP (2000) Chronology and geochemistry of late Holocene eolian deposits in the Brandon Sand Hills, Manitoba, Canada. Quat Int 67:61–74

    Google Scholar 

  • Yorks TP, West NE, Richard JM, Warren SW (1997) Toleration of traffic by vegetation: life form conclusions and summary extracts from a comprehensive data base. Environ Manage 21(1):121–131

    Google Scholar 

Download references

Acknowledgments

This chapter is a contribution to the book Patterns of Land Degradation in Drylands: Understanding Self-Organised Ecogeomorphic Systems, which is the outcome of an ESF-funded Exploratory Workshop – “Self-organized ecogeomorphic systems: confronting models with data for land degradation in drylands” – which was held in Potsdam, Germany, 7–10 June 2010. The research on gap dynamics was supported by grants from the U. S. Army ERDC – Construction Engineering Research Laboratory to New Mexico State University, USDA-ARS and Sevilleta LTER. The development of Mahleran was funded by NERC grant GR3/12754, NSF grants DEB 00-80412 to Jornada LTER and DEB 02-17774 to Sevilleta LTER and support from The University of Sheffield, The Worshipful Company of Farmers, the Royal Society Dudley Stamp Memorial Fund and Rothamsted Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Turnbull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Turnbull, L. et al. (2014). Approaches to Modelling Ecogeomorphic Systems. In: Mueller, E., Wainwright, J., Parsons, A., Turnbull, L. (eds) Patterns of Land Degradation in Drylands. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5727-1_7

Download citation

Publish with us

Policies and ethics