Skip to main content

Efficient Algorithms for the Green’s Function Formalism

Semiconductor Transport Simulations on CPUs and GPUs

  • Chapter
  • First Online:
IAENG Transactions on Engineering Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 186))

  • 827 Accesses

Abstract

We present efficient implementations of the non-equilibrium Green’s function method for numeric simulations of transport in semiconductor nanostructures. The algorithms are implemented on CPUs and GPUs using LabVIEW 2011 64-Bit together with the Multicore Analysis and Sparse Matrix Toolkit and the GPU Analysis Toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datta S (1999) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  2. Datta S, Das B (1990) Appl Phys Lett 56(7):665

    Article  Google Scholar 

  3. IBM. idataplex dx360 M3 datasheet. http://www-03.ibm.com/systems/x/hardware/idataplex/dx360m3/index.html

  4. Infiniband TA. Introduction to Infiniband. http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf

  5. Intel. Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/

  6. Jacob J, Lehmann H, Merkt U, Mehl S, Hankiewicz E (2011) DC-biased InAs spin-filter cascades. J Appl Phys 112:013706

    Google Scholar 

  7. Jacob J, Meier G, Peters S, Matsuyama T, Merkt U, Cummings AW, Akis R, Ferry DK (2009) Generation of highly spin-polarized currents in cascaded InAs spin filters. J Appl Phys 105:093714

    Article  Google Scholar 

  8. Jacob J, Wenzel L, Schmidt D, Ruan Q, Amin V, Sinova J (2012) Numerical transport simulations in semiconductor nanostructures on CPUs and GPUs. Lecture notes in engineering and computer science: proceedings of the international multiconference of engineers and computer scientists 2012, IMECS

    Google Scholar 

  9. Koo HC, Kwon JH, Eom J, Chang J, Han SH, Johnson M (2009) Control of spin precession in a spin-injected field effect transistor. Science 325(5947):1515–1518

    Article  Google Scholar 

  10. MAGMA. Magma—matrix algebra on gpu and multicore architectures. http://icl.cs.utk.edu/magma/

  11. National instruments (2012) LabVIEW GPU Analysis Toolkit. beta version

    Google Scholar 

  12. National instruments (2012) LabVIEW multicore analysis and sparse matrix toolkit. https://decibel.ni.com/content/docs/DOC-12086

  13. NVIDIA. CUDA BLAS implementation description. http://developer.nvidia.com/cuBLAS

  14. NVIDIA. CUDA version 4.0 datasheet. http://developer.nvidia.com/cuFFT

  15. NVIDIA. CUDA version 4.0 datasheet. http://developer.nvidia.com/cuda-toolkit-40

  16. NVIDIA. CUDA version 5 RDMA feature. http://developer.nvidia.com/gpudirect

  17. NVIDIA (2011) Tesla M2050 GPGPU datasheet

    Google Scholar 

  18. Oestreich M, Bender M, Hubner J, Hägele D, Rühle WW, Hartmann Th, Klar PJ, Heimbrodt W, Lampalzer M, Volz K, Stolz W (2002) Spin injection, spin transport and spin coherence. Semicond Sci Technol 17(4):285–297

    Article  Google Scholar 

  19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C, vol 123. Cambridge University Press, Cambridge, p 50

    Google Scholar 

  20. Schenk O, Bollhoefer M, Roemer R (2008) SIAM Rev 50:91–112

    Article  MathSciNet  MATH  Google Scholar 

  21. Schenk O, Waechter A, Hagemann M (2007) J Comput Optim Appl 36(2–3):321–341

    Article  MATH  Google Scholar 

  22. Schenk O, Gärtner K (2004) Journal of Future Generation Computer Systems 20(3):475–487

    Google Scholar 

  23. Schmidt G, Ferrand D, Molenkamp LW, Filip AT, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B 62(8):R4790–R4793

    Article  Google Scholar 

  24. Usuki T et al (1994) Phys Rev B 50:7615–7625

    Article  Google Scholar 

  25. Wunderlich J, Park B-G, Irvine AC, Zarbo LP, Rozkotov E, Nemec P, Novak V, Sinova J, Jungwirth T (2010) Science 330(6012):1801–1804

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft via GK 1286 and Me916/11-1, the City of Hamburg via the Center of Excellence “Nanospintronics”, the Office of Naval Research via ONR-N00014110780, and the National Science Foundation by NSF-MRSEC DMR-0820414, NSFDMR-1105512, NHARP

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacob, J. et al. (2013). Efficient Algorithms for the Green’s Function Formalism. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5651-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5651-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5623-6

  • Online ISBN: 978-94-007-5651-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics